Loading…

Plasma Deposition of Ti–C–N Coatings in Air

The possibility of production of Ti-, N-, and C-containing superhard coatings on a metal substrate by a plasma-dynamic method in air is studied. The coating is deposited in the time of one short operating cycle of a magnetoplasma accelerator under the impact of a high speed electric discharge Ti-con...

Full description

Saved in:
Bibliographic Details
Published in:Inorganic materials : applied research 2018, Vol.9 (3), p.433-436
Main Authors: Sivkov, A. A., Gerasimov, D. Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The possibility of production of Ti-, N-, and C-containing superhard coatings on a metal substrate by a plasma-dynamic method in air is studied. The coating is deposited in the time of one short operating cycle of a magnetoplasma accelerator under the impact of a high speed electric discharge Ti-containing plasma jet on the substrate surface. Formation of TiN and TiCN nanostructured layers in the coating structure is ascertained with the help of the SEM and X-ray diffraction methods and it leads to the coating hardness increasing. Formation of a gradient layer of mixed material at the coating/substrate interface is found to occur under the action of a high-enthalpy plasma jet on a metal substrate. The value of hardness is not constant throughout the coating thickness, and ultrahigh nanohardness values >20 GPa were obtained for the subsurface layer and substrate/coating interface region. The mean value of hardness of the coating is 16.2 GPa. The coating produced has good adhesion with the substrate.
ISSN:2075-1133
2075-115X
DOI:10.1134/S2075113318030292