Loading…

Rearrangement of Cyclopropylcarbinyl Chloride Over Protonic Zeolites: Formation of Carbocations and Behavior as Solid Solvents

The rearrangement of cyclopropylcarbinyl chloride was studied over protonic zeolites and K-10 Montmorillonite. The energy of activation is lower on zeolites, with K-10 showing almost the same value for the rearrangement in 80% aqueous ethanol solution. HUSY showed the lowest energy of activation, wh...

Full description

Saved in:
Bibliographic Details
Published in:Topics in catalysis 2018-06, Vol.61 (7-8), p.616-622
Main Authors: Arca, Hugo A., Mota, Claudio J. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rearrangement of cyclopropylcarbinyl chloride was studied over protonic zeolites and K-10 Montmorillonite. The energy of activation is lower on zeolites, with K-10 showing almost the same value for the rearrangement in 80% aqueous ethanol solution. HUSY showed the lowest energy of activation, whereas HZSM-5 and HYD [dealuminated with (NH 4 ) 2 SiF 6 ] presented similar energy of activation. This difference may be due to the presence of extra-framework aluminum species. On the other hand, the entropy of activation is significantly less negative on ZSM-5 and may be associated with the narrower pore structure, providing ionization of the substrate without losing many degrees of freedom. Kinetic isotope effects indicated that ionization is assisted by hydrogen bonding of the zeolite OH groups with the leaving halide, similar to the push–pull mechanism proposed for solution chemistry. Hence, zeolites behave as solid solvents, providing a polar microscopic environment for ionic reactions to take place, and solvating the transition state and the ions formed.
ISSN:1022-5528
1572-9028
DOI:10.1007/s11244-018-0911-8