Loading…

A perspective on recent methods on testing predictability of asset returns

This paper highlights some recent developments in testing predictability of asset returns with focuses on linear mean regressions, quantile regressions and nonlinear regression models. For these models, when predictors are highly persistent and their innovations are contemporarily correlated with de...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mathematics-A Journal of Chinese Universities 2018-06, Vol.33 (2), p.127-144
Main Authors: Liao, Xiao-sai, Cai, Zong-wu, Chen, Hai-qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-ca3dabc11c4d7184144d44ec1820f4024795c8d9fc7e4058b2b0a8585c7c6da83
cites cdi_FETCH-LOGICAL-c352t-ca3dabc11c4d7184144d44ec1820f4024795c8d9fc7e4058b2b0a8585c7c6da83
container_end_page 144
container_issue 2
container_start_page 127
container_title Applied Mathematics-A Journal of Chinese Universities
container_volume 33
creator Liao, Xiao-sai
Cai, Zong-wu
Chen, Hai-qiang
description This paper highlights some recent developments in testing predictability of asset returns with focuses on linear mean regressions, quantile regressions and nonlinear regression models. For these models, when predictors are highly persistent and their innovations are contemporarily correlated with dependent variable, the ordinary least squares estimator has a finite-sample bias, and its limiting distribution relies on some unknown nuisance parameter, which is not consistently estimable. Without correcting these issues, conventional test statistics are subject to a serious size distortion and generate a misleading conclusion in testing predictability of asset returns in real applications. In the past two decades, sequential studies have contributed to this subject and proposed various kinds of solutions, including, but not limit to, the bias-correction procedures, the linear projection approach, the IVX filtering idea, the variable addition approaches, the weighted empirical likelihood method, and the double-weight robust approach. Particularly, to catch up with the fast-growing literature in the recent decade, we offer a selective overview of these methods. Finally, some future research topics, such as the econometric theory for predictive regressions with structural changes, and nonparametric predictive models, and predictive models under a more general data setting, are also discussed.
doi_str_mv 10.1007/s11766-018-3590-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2052868377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2052868377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-ca3dabc11c4d7184144d44ec1820f4024795c8d9fc7e4058b2b0a8585c7c6da83</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWGo_gLeA5-jMbrLJHkvxT6XgRc8hm2TrlnZ3TVKh396UFTx5mmF4v_eGR8gtwj0CyIeIKKuKASpWihoYXJAZ1nXJgHNxmXcAwRBKvCaLGHcAgFxyIdSMvC7p6EMcvU3dt6dDT4O3vk_04NPn4OL5knxMXb-lY_Cus8k03b5LJzq01MToUybSMfTxhly1Zh_94nfOycfT4_vqhW3enter5YbZUhSJWVM601hEy51ExZFzx7m3qApoORRc1sIqV7dWeg5CNUUDRgklrLSVM6qck7vJdwzD1zH_pndDzs-RugBRqEqVUmYVTiobhhiDb_UYuoMJJ42gz63pqTWdW9Pn1jRkppiYmLX91oc_5_-hHxiObyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2052868377</pqid></control><display><type>article</type><title>A perspective on recent methods on testing predictability of asset returns</title><source>Springer Link</source><creator>Liao, Xiao-sai ; Cai, Zong-wu ; Chen, Hai-qiang</creator><creatorcontrib>Liao, Xiao-sai ; Cai, Zong-wu ; Chen, Hai-qiang</creatorcontrib><description>This paper highlights some recent developments in testing predictability of asset returns with focuses on linear mean regressions, quantile regressions and nonlinear regression models. For these models, when predictors are highly persistent and their innovations are contemporarily correlated with dependent variable, the ordinary least squares estimator has a finite-sample bias, and its limiting distribution relies on some unknown nuisance parameter, which is not consistently estimable. Without correcting these issues, conventional test statistics are subject to a serious size distortion and generate a misleading conclusion in testing predictability of asset returns in real applications. In the past two decades, sequential studies have contributed to this subject and proposed various kinds of solutions, including, but not limit to, the bias-correction procedures, the linear projection approach, the IVX filtering idea, the variable addition approaches, the weighted empirical likelihood method, and the double-weight robust approach. Particularly, to catch up with the fast-growing literature in the recent decade, we offer a selective overview of these methods. Finally, some future research topics, such as the econometric theory for predictive regressions with structural changes, and nonparametric predictive models, and predictive models under a more general data setting, are also discussed.</description><identifier>ISSN: 1005-1031</identifier><identifier>EISSN: 1993-0445</identifier><identifier>DOI: 10.1007/s11766-018-3590-0</identifier><language>eng</language><publisher>Hangzhou: Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</publisher><subject>Applications of Mathematics ; Bias ; Dependent variables ; Econometrics ; Economic models ; Filtration ; Mathematics ; Mathematics and Statistics ; Regression analysis ; Regression models ; Statistical tests</subject><ispartof>Applied Mathematics-A Journal of Chinese Universities, 2018-06, Vol.33 (2), p.127-144</ispartof><rights>Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-ca3dabc11c4d7184144d44ec1820f4024795c8d9fc7e4058b2b0a8585c7c6da83</citedby><cites>FETCH-LOGICAL-c352t-ca3dabc11c4d7184144d44ec1820f4024795c8d9fc7e4058b2b0a8585c7c6da83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liao, Xiao-sai</creatorcontrib><creatorcontrib>Cai, Zong-wu</creatorcontrib><creatorcontrib>Chen, Hai-qiang</creatorcontrib><title>A perspective on recent methods on testing predictability of asset returns</title><title>Applied Mathematics-A Journal of Chinese Universities</title><addtitle>Appl. Math. J. Chin. Univ</addtitle><description>This paper highlights some recent developments in testing predictability of asset returns with focuses on linear mean regressions, quantile regressions and nonlinear regression models. For these models, when predictors are highly persistent and their innovations are contemporarily correlated with dependent variable, the ordinary least squares estimator has a finite-sample bias, and its limiting distribution relies on some unknown nuisance parameter, which is not consistently estimable. Without correcting these issues, conventional test statistics are subject to a serious size distortion and generate a misleading conclusion in testing predictability of asset returns in real applications. In the past two decades, sequential studies have contributed to this subject and proposed various kinds of solutions, including, but not limit to, the bias-correction procedures, the linear projection approach, the IVX filtering idea, the variable addition approaches, the weighted empirical likelihood method, and the double-weight robust approach. Particularly, to catch up with the fast-growing literature in the recent decade, we offer a selective overview of these methods. Finally, some future research topics, such as the econometric theory for predictive regressions with structural changes, and nonparametric predictive models, and predictive models under a more general data setting, are also discussed.</description><subject>Applications of Mathematics</subject><subject>Bias</subject><subject>Dependent variables</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Filtration</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical tests</subject><issn>1005-1031</issn><issn>1993-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWGo_gLeA5-jMbrLJHkvxT6XgRc8hm2TrlnZ3TVKh396UFTx5mmF4v_eGR8gtwj0CyIeIKKuKASpWihoYXJAZ1nXJgHNxmXcAwRBKvCaLGHcAgFxyIdSMvC7p6EMcvU3dt6dDT4O3vk_04NPn4OL5knxMXb-lY_Cus8k03b5LJzq01MToUybSMfTxhly1Zh_94nfOycfT4_vqhW3enter5YbZUhSJWVM601hEy51ExZFzx7m3qApoORRc1sIqV7dWeg5CNUUDRgklrLSVM6qck7vJdwzD1zH_pndDzs-RugBRqEqVUmYVTiobhhiDb_UYuoMJJ42gz63pqTWdW9Pn1jRkppiYmLX91oc_5_-hHxiObyI</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Liao, Xiao-sai</creator><creator>Cai, Zong-wu</creator><creator>Chen, Hai-qiang</creator><general>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>A perspective on recent methods on testing predictability of asset returns</title><author>Liao, Xiao-sai ; Cai, Zong-wu ; Chen, Hai-qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-ca3dabc11c4d7184144d44ec1820f4024795c8d9fc7e4058b2b0a8585c7c6da83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Bias</topic><topic>Dependent variables</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Filtration</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Xiao-sai</creatorcontrib><creatorcontrib>Cai, Zong-wu</creatorcontrib><creatorcontrib>Chen, Hai-qiang</creatorcontrib><collection>CrossRef</collection><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Xiao-sai</au><au>Cai, Zong-wu</au><au>Chen, Hai-qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A perspective on recent methods on testing predictability of asset returns</atitle><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle><stitle>Appl. Math. J. Chin. Univ</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>33</volume><issue>2</issue><spage>127</spage><epage>144</epage><pages>127-144</pages><issn>1005-1031</issn><eissn>1993-0445</eissn><abstract>This paper highlights some recent developments in testing predictability of asset returns with focuses on linear mean regressions, quantile regressions and nonlinear regression models. For these models, when predictors are highly persistent and their innovations are contemporarily correlated with dependent variable, the ordinary least squares estimator has a finite-sample bias, and its limiting distribution relies on some unknown nuisance parameter, which is not consistently estimable. Without correcting these issues, conventional test statistics are subject to a serious size distortion and generate a misleading conclusion in testing predictability of asset returns in real applications. In the past two decades, sequential studies have contributed to this subject and proposed various kinds of solutions, including, but not limit to, the bias-correction procedures, the linear projection approach, the IVX filtering idea, the variable addition approaches, the weighted empirical likelihood method, and the double-weight robust approach. Particularly, to catch up with the fast-growing literature in the recent decade, we offer a selective overview of these methods. Finally, some future research topics, such as the econometric theory for predictive regressions with structural changes, and nonparametric predictive models, and predictive models under a more general data setting, are also discussed.</abstract><cop>Hangzhou</cop><pub>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</pub><doi>10.1007/s11766-018-3590-0</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-1031
ispartof Applied Mathematics-A Journal of Chinese Universities, 2018-06, Vol.33 (2), p.127-144
issn 1005-1031
1993-0445
language eng
recordid cdi_proquest_journals_2052868377
source Springer Link
subjects Applications of Mathematics
Bias
Dependent variables
Econometrics
Economic models
Filtration
Mathematics
Mathematics and Statistics
Regression analysis
Regression models
Statistical tests
title A perspective on recent methods on testing predictability of asset returns
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A14%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20perspective%20on%20recent%20methods%20on%20testing%20predictability%20of%20asset%20returns&rft.jtitle=Applied%20Mathematics-A%20Journal%20of%20Chinese%20Universities&rft.au=Liao,%20Xiao-sai&rft.date=2018-06-01&rft.volume=33&rft.issue=2&rft.spage=127&rft.epage=144&rft.pages=127-144&rft.issn=1005-1031&rft.eissn=1993-0445&rft_id=info:doi/10.1007/s11766-018-3590-0&rft_dat=%3Cproquest_cross%3E2052868377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-ca3dabc11c4d7184144d44ec1820f4024795c8d9fc7e4058b2b0a8585c7c6da83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2052868377&rft_id=info:pmid/&rfr_iscdi=true