Loading…
Cycles in oceanic teleconnections and global temperature change
Three large ocean currents are represented by proxy time series: the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO). We here show how proxies for the currents interact with each other and with the global temperature anomaly (GTA). Ou...
Saved in:
Published in: | Theoretical and applied climatology 2019-05, Vol.136 (3-4), p.985-1000 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-22fcb6ff71cf646b75bb2ef8ac1e25a2f2fd696765698e7316c5354324e2dfcb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-22fcb6ff71cf646b75bb2ef8ac1e25a2f2fd696765698e7316c5354324e2dfcb3 |
container_end_page | 1000 |
container_issue | 3-4 |
container_start_page | 985 |
container_title | Theoretical and applied climatology |
container_volume | 136 |
creator | Seip, Knut L. Grøn, Øyvind |
description | Three large ocean currents are represented by proxy time series: the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO). We here show how proxies for the currents interact with each other and with the global temperature anomaly (GTA). Our results are obtained by a novel method, which identifies running average leading–lagging (LL) relations, between paired series. We find common cycle times for a paired series of 6–7 and 25–28 years and identify years when the LL relations switch. Switching occurs with 18.4 ± 14.3-year intervals for the short 6–7-year cycles and with 27 ± 15-year intervals for the 25–28-year cycles. During the period 1940–1950, the LL relations for the long cycles were circular (nomenclature
x
leads
y
:
x
→
y
): GTA → NAO → SOI → PDO → GTA. However, after 1960, the LL relations become more complex and there are indications that GTA leads to both NAO and PDO. The switching years are related to ocean current tie points and reversals reported in the literature. |
doi_str_mv | 10.1007/s00704-018-2533-2 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2053206097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A583531161</galeid><sourcerecordid>A583531161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-22fcb6ff71cf646b75bb2ef8ac1e25a2f2fd696765698e7316c5354324e2dfcb3</originalsourceid><addsrcrecordid>eNp1kVtrwyAYhmVssO7wA3YX2NUu0nmImlyNUnYoFAY7wO7EmM8sJTWdWlj__SwZjF4MQeHzefTTF6ErgqcEY3kb0oSLHJMyp5yxnB6hCSlYkRdFyY7RBBMpc1mVH6foLIQVxpgKISfobr4zPYSsc9lgQLvOZBF6MINzYGI3uJBp12RtP9S6T1vrDXgdtx4y86ldCxfoxOo-wOXveo7eH-7f5k_58vlxMZ8tc8PKKuaUWlMLayUxVhSilryuKdhSGwKUa2qpbUQlpOCiKkEyIgxnvGC0ANoklZ2j6_HcjR--thCiWg1b79KVimLOKBa4komajlSre1Cds0P02qTRwLpLbwLbpfqMl4wzQgRJws2BkJgI37HV2xDU4vXlkCUja_wQggerNr5ba79TBKt9CGoMQaUQ1D4ERZNDRyckNn2X_2v7f-kHIF6IPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053206097</pqid></control><display><type>article</type><title>Cycles in oceanic teleconnections and global temperature change</title><source>Springer Nature</source><creator>Seip, Knut L. ; Grøn, Øyvind</creator><creatorcontrib>Seip, Knut L. ; Grøn, Øyvind</creatorcontrib><description>Three large ocean currents are represented by proxy time series: the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO). We here show how proxies for the currents interact with each other and with the global temperature anomaly (GTA). Our results are obtained by a novel method, which identifies running average leading–lagging (LL) relations, between paired series. We find common cycle times for a paired series of 6–7 and 25–28 years and identify years when the LL relations switch. Switching occurs with 18.4 ± 14.3-year intervals for the short 6–7-year cycles and with 27 ± 15-year intervals for the 25–28-year cycles. During the period 1940–1950, the LL relations for the long cycles were circular (nomenclature
x
leads
y
:
x
→
y
): GTA → NAO → SOI → PDO → GTA. However, after 1960, the LL relations become more complex and there are indications that GTA leads to both NAO and PDO. The switching years are related to ocean current tie points and reversals reported in the literature.</description><identifier>ISSN: 0177-798X</identifier><identifier>EISSN: 1434-4483</identifier><identifier>DOI: 10.1007/s00704-018-2533-2</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Aquatic Pollution ; Atlantic Oscillation ; Atmospheric forcing ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Climate cycles ; Climate science ; Climatology ; Cycles ; Earth and Environmental Science ; Earth Sciences ; Global temperatures ; Intervals ; Natural cycles ; Nomenclature ; North Atlantic Oscillation ; Novels ; Ocean currents ; Ocean-atmosphere system ; Oceans ; Original Paper ; Pacific Decadal Oscillation ; Proxy ; Southern Oscillation ; Southern Oscillation Index ; Switching ; Temperature anomalies ; Temperature changes ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Theoretical and applied climatology, 2019-05, Vol.136 (3-4), p.985-1000</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Theoretical and Applied Climatology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-22fcb6ff71cf646b75bb2ef8ac1e25a2f2fd696765698e7316c5354324e2dfcb3</citedby><cites>FETCH-LOGICAL-c389t-22fcb6ff71cf646b75bb2ef8ac1e25a2f2fd696765698e7316c5354324e2dfcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Seip, Knut L.</creatorcontrib><creatorcontrib>Grøn, Øyvind</creatorcontrib><title>Cycles in oceanic teleconnections and global temperature change</title><title>Theoretical and applied climatology</title><addtitle>Theor Appl Climatol</addtitle><description>Three large ocean currents are represented by proxy time series: the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO). We here show how proxies for the currents interact with each other and with the global temperature anomaly (GTA). Our results are obtained by a novel method, which identifies running average leading–lagging (LL) relations, between paired series. We find common cycle times for a paired series of 6–7 and 25–28 years and identify years when the LL relations switch. Switching occurs with 18.4 ± 14.3-year intervals for the short 6–7-year cycles and with 27 ± 15-year intervals for the 25–28-year cycles. During the period 1940–1950, the LL relations for the long cycles were circular (nomenclature
x
leads
y
:
x
→
y
): GTA → NAO → SOI → PDO → GTA. However, after 1960, the LL relations become more complex and there are indications that GTA leads to both NAO and PDO. The switching years are related to ocean current tie points and reversals reported in the literature.</description><subject>Aquatic Pollution</subject><subject>Atlantic Oscillation</subject><subject>Atmospheric forcing</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Climate cycles</subject><subject>Climate science</subject><subject>Climatology</subject><subject>Cycles</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Global temperatures</subject><subject>Intervals</subject><subject>Natural cycles</subject><subject>Nomenclature</subject><subject>North Atlantic Oscillation</subject><subject>Novels</subject><subject>Ocean currents</subject><subject>Ocean-atmosphere system</subject><subject>Oceans</subject><subject>Original Paper</subject><subject>Pacific Decadal Oscillation</subject><subject>Proxy</subject><subject>Southern Oscillation</subject><subject>Southern Oscillation Index</subject><subject>Switching</subject><subject>Temperature anomalies</subject><subject>Temperature changes</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>0177-798X</issn><issn>1434-4483</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kVtrwyAYhmVssO7wA3YX2NUu0nmImlyNUnYoFAY7wO7EmM8sJTWdWlj__SwZjF4MQeHzefTTF6ErgqcEY3kb0oSLHJMyp5yxnB6hCSlYkRdFyY7RBBMpc1mVH6foLIQVxpgKISfobr4zPYSsc9lgQLvOZBF6MINzYGI3uJBp12RtP9S6T1vrDXgdtx4y86ldCxfoxOo-wOXveo7eH-7f5k_58vlxMZ8tc8PKKuaUWlMLayUxVhSilryuKdhSGwKUa2qpbUQlpOCiKkEyIgxnvGC0ANoklZ2j6_HcjR--thCiWg1b79KVimLOKBa4komajlSre1Cds0P02qTRwLpLbwLbpfqMl4wzQgRJws2BkJgI37HV2xDU4vXlkCUja_wQggerNr5ba79TBKt9CGoMQaUQ1D4ERZNDRyckNn2X_2v7f-kHIF6IPQ</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Seip, Knut L.</creator><creator>Grøn, Øyvind</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190501</creationdate><title>Cycles in oceanic teleconnections and global temperature change</title><author>Seip, Knut L. ; Grøn, Øyvind</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-22fcb6ff71cf646b75bb2ef8ac1e25a2f2fd696765698e7316c5354324e2dfcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aquatic Pollution</topic><topic>Atlantic Oscillation</topic><topic>Atmospheric forcing</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Climate cycles</topic><topic>Climate science</topic><topic>Climatology</topic><topic>Cycles</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Global temperatures</topic><topic>Intervals</topic><topic>Natural cycles</topic><topic>Nomenclature</topic><topic>North Atlantic Oscillation</topic><topic>Novels</topic><topic>Ocean currents</topic><topic>Ocean-atmosphere system</topic><topic>Oceans</topic><topic>Original Paper</topic><topic>Pacific Decadal Oscillation</topic><topic>Proxy</topic><topic>Southern Oscillation</topic><topic>Southern Oscillation Index</topic><topic>Switching</topic><topic>Temperature anomalies</topic><topic>Temperature changes</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seip, Knut L.</creatorcontrib><creatorcontrib>Grøn, Øyvind</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Theoretical and applied climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seip, Knut L.</au><au>Grøn, Øyvind</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cycles in oceanic teleconnections and global temperature change</atitle><jtitle>Theoretical and applied climatology</jtitle><stitle>Theor Appl Climatol</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>136</volume><issue>3-4</issue><spage>985</spage><epage>1000</epage><pages>985-1000</pages><issn>0177-798X</issn><eissn>1434-4483</eissn><abstract>Three large ocean currents are represented by proxy time series: the North Atlantic Oscillation (NAO), the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO). We here show how proxies for the currents interact with each other and with the global temperature anomaly (GTA). Our results are obtained by a novel method, which identifies running average leading–lagging (LL) relations, between paired series. We find common cycle times for a paired series of 6–7 and 25–28 years and identify years when the LL relations switch. Switching occurs with 18.4 ± 14.3-year intervals for the short 6–7-year cycles and with 27 ± 15-year intervals for the 25–28-year cycles. During the period 1940–1950, the LL relations for the long cycles were circular (nomenclature
x
leads
y
:
x
→
y
): GTA → NAO → SOI → PDO → GTA. However, after 1960, the LL relations become more complex and there are indications that GTA leads to both NAO and PDO. The switching years are related to ocean current tie points and reversals reported in the literature.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00704-018-2533-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-798X |
ispartof | Theoretical and applied climatology, 2019-05, Vol.136 (3-4), p.985-1000 |
issn | 0177-798X 1434-4483 |
language | eng |
recordid | cdi_proquest_journals_2053206097 |
source | Springer Nature |
subjects | Aquatic Pollution Atlantic Oscillation Atmospheric forcing Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Climate cycles Climate science Climatology Cycles Earth and Environmental Science Earth Sciences Global temperatures Intervals Natural cycles Nomenclature North Atlantic Oscillation Novels Ocean currents Ocean-atmosphere system Oceans Original Paper Pacific Decadal Oscillation Proxy Southern Oscillation Southern Oscillation Index Switching Temperature anomalies Temperature changes Waste Water Technology Water Management Water Pollution Control |
title | Cycles in oceanic teleconnections and global temperature change |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cycles%20in%20oceanic%20teleconnections%20and%20global%20temperature%20change&rft.jtitle=Theoretical%20and%20applied%20climatology&rft.au=Seip,%20Knut%20L.&rft.date=2019-05-01&rft.volume=136&rft.issue=3-4&rft.spage=985&rft.epage=1000&rft.pages=985-1000&rft.issn=0177-798X&rft.eissn=1434-4483&rft_id=info:doi/10.1007/s00704-018-2533-2&rft_dat=%3Cgale_proqu%3EA583531161%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-22fcb6ff71cf646b75bb2ef8ac1e25a2f2fd696765698e7316c5354324e2dfcb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2053206097&rft_id=info:pmid/&rft_galeid=A583531161&rfr_iscdi=true |