Loading…

Entanglement witness criteria of strong-k-separability for multipartite quantum states

Let H 1 , H 2 , … , H n be separable complex Hilbert spaces with dim H i ≥ 2 and n ≥ 2 . Assume that ρ is a state in H = H 1 ⊗ H 2 ⊗ ⋯ ⊗ H n . ρ is called strong- k -separable ( 2 ≤ k ≤ n ) if ρ is separable for any k -partite division of H . In this paper, an entanglement witnesses criterion of str...

Full description

Saved in:
Bibliographic Details
Published in:Quantum information processing 2018-07, Vol.17 (7), p.1-8, Article 181
Main Authors: Yan, Siqing, Hou, Jinchuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-4e3e5cec07b9109e7fa7a738766026d7d82ba59610286b1c29cb591feb26440d3
cites cdi_FETCH-LOGICAL-c316t-4e3e5cec07b9109e7fa7a738766026d7d82ba59610286b1c29cb591feb26440d3
container_end_page 8
container_issue 7
container_start_page 1
container_title Quantum information processing
container_volume 17
creator Yan, Siqing
Hou, Jinchuan
description Let H 1 , H 2 , … , H n be separable complex Hilbert spaces with dim H i ≥ 2 and n ≥ 2 . Assume that ρ is a state in H = H 1 ⊗ H 2 ⊗ ⋯ ⊗ H n . ρ is called strong- k -separable ( 2 ≤ k ≤ n ) if ρ is separable for any k -partite division of H . In this paper, an entanglement witnesses criterion of strong- k -separability is obtained, which says that ρ is not strong- k -separable if and only if there exist a k -division space H m 1 ⊗ ⋯ ⊗ H m k of H , a finite-rank linear elementary operator positive on product states Λ : B ( H m 2 ⊗ ⋯ ⊗ H m k ) → B ( H m 1 ) and a state ρ 0 ∈ S ( H m 1 ⊗ H m 1 ) , such that Tr ( W ρ ) < 0 , where W = ( Id ⊗ Λ † ) ρ 0 is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.
doi_str_mv 10.1007/s11128-018-1952-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2053433079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2053433079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4e3e5cec07b9109e7fa7a738766026d7d82ba59610286b1c29cb591feb26440d3</originalsourceid><addsrcrecordid>eNp1kEFLwzAUx4MoOKcfwFvBc_S9pEnao4zphIEX9RrSLh2dbbolKbJvb2YFT57e4_H7_x_8CLlFuEcA9RAQkRUUsKBYCkbzMzJDoThFztn5zw4UlBCX5CqEHQBDWcgZ-Vi6aNy2s711Mftqo7MhZLVvo_WtyYYmC9EPbks_abB7403Vdm08Zs3gs37sYptuMcHZYTQujn3CTbThmlw0pgv25nfOyfvT8m2xouvX55fF45rWHGWkueVW1LYGVZUIpVWNUUbxQkkJTG7UpmCVEaVEYIWssGZlXYkSG1sxmeew4XNyN_Xu_XAYbYh6N4zepZeageA556DKROFE1X4IwdtG733bG3_UCPqkT0_6dNKnT_p0njJsyoTEuq31f83_h74BUI5zgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2053433079</pqid></control><display><type>article</type><title>Entanglement witness criteria of strong-k-separability for multipartite quantum states</title><source>Springer Nature</source><creator>Yan, Siqing ; Hou, Jinchuan</creator><creatorcontrib>Yan, Siqing ; Hou, Jinchuan</creatorcontrib><description>Let H 1 , H 2 , … , H n be separable complex Hilbert spaces with dim H i ≥ 2 and n ≥ 2 . Assume that ρ is a state in H = H 1 ⊗ H 2 ⊗ ⋯ ⊗ H n . ρ is called strong- k -separable ( 2 ≤ k ≤ n ) if ρ is separable for any k -partite division of H . In this paper, an entanglement witnesses criterion of strong- k -separability is obtained, which says that ρ is not strong- k -separable if and only if there exist a k -division space H m 1 ⊗ ⋯ ⊗ H m k of H , a finite-rank linear elementary operator positive on product states Λ : B ( H m 2 ⊗ ⋯ ⊗ H m k ) → B ( H m 1 ) and a state ρ 0 ∈ S ( H m 1 ⊗ H m 1 ) , such that Tr ( W ρ ) &lt; 0 , where W = ( Id ⊗ Λ † ) ρ 0 is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-018-1952-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Hilbert space ; Mathematical Physics ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum entanglement ; Quantum Information Technology ; Quantum Physics ; Quantum theory ; Spintronics</subject><ispartof>Quantum information processing, 2018-07, Vol.17 (7), p.1-8, Article 181</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4e3e5cec07b9109e7fa7a738766026d7d82ba59610286b1c29cb591feb26440d3</citedby><cites>FETCH-LOGICAL-c316t-4e3e5cec07b9109e7fa7a738766026d7d82ba59610286b1c29cb591feb26440d3</cites><orcidid>0000-0003-1741-0711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Siqing</creatorcontrib><creatorcontrib>Hou, Jinchuan</creatorcontrib><title>Entanglement witness criteria of strong-k-separability for multipartite quantum states</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Let H 1 , H 2 , … , H n be separable complex Hilbert spaces with dim H i ≥ 2 and n ≥ 2 . Assume that ρ is a state in H = H 1 ⊗ H 2 ⊗ ⋯ ⊗ H n . ρ is called strong- k -separable ( 2 ≤ k ≤ n ) if ρ is separable for any k -partite division of H . In this paper, an entanglement witnesses criterion of strong- k -separability is obtained, which says that ρ is not strong- k -separable if and only if there exist a k -division space H m 1 ⊗ ⋯ ⊗ H m k of H , a finite-rank linear elementary operator positive on product states Λ : B ( H m 2 ⊗ ⋯ ⊗ H m k ) → B ( H m 1 ) and a state ρ 0 ∈ S ( H m 1 ⊗ H m 1 ) , such that Tr ( W ρ ) &lt; 0 , where W = ( Id ⊗ Λ † ) ρ 0 is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.</description><subject>Data Structures and Information Theory</subject><subject>Hilbert space</subject><subject>Mathematical Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum entanglement</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLwzAUx4MoOKcfwFvBc_S9pEnao4zphIEX9RrSLh2dbbolKbJvb2YFT57e4_H7_x_8CLlFuEcA9RAQkRUUsKBYCkbzMzJDoThFztn5zw4UlBCX5CqEHQBDWcgZ-Vi6aNy2s711Mftqo7MhZLVvo_WtyYYmC9EPbks_abB7403Vdm08Zs3gs37sYptuMcHZYTQujn3CTbThmlw0pgv25nfOyfvT8m2xouvX55fF45rWHGWkueVW1LYGVZUIpVWNUUbxQkkJTG7UpmCVEaVEYIWssGZlXYkSG1sxmeew4XNyN_Xu_XAYbYh6N4zepZeageA556DKROFE1X4IwdtG733bG3_UCPqkT0_6dNKnT_p0njJsyoTEuq31f83_h74BUI5zgg</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Yan, Siqing</creator><creator>Hou, Jinchuan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1741-0711</orcidid></search><sort><creationdate>20180701</creationdate><title>Entanglement witness criteria of strong-k-separability for multipartite quantum states</title><author>Yan, Siqing ; Hou, Jinchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4e3e5cec07b9109e7fa7a738766026d7d82ba59610286b1c29cb591feb26440d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data Structures and Information Theory</topic><topic>Hilbert space</topic><topic>Mathematical Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum entanglement</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Siqing</creatorcontrib><creatorcontrib>Hou, Jinchuan</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Siqing</au><au>Hou, Jinchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entanglement witness criteria of strong-k-separability for multipartite quantum states</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>17</volume><issue>7</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>181</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Let H 1 , H 2 , … , H n be separable complex Hilbert spaces with dim H i ≥ 2 and n ≥ 2 . Assume that ρ is a state in H = H 1 ⊗ H 2 ⊗ ⋯ ⊗ H n . ρ is called strong- k -separable ( 2 ≤ k ≤ n ) if ρ is separable for any k -partite division of H . In this paper, an entanglement witnesses criterion of strong- k -separability is obtained, which says that ρ is not strong- k -separable if and only if there exist a k -division space H m 1 ⊗ ⋯ ⊗ H m k of H , a finite-rank linear elementary operator positive on product states Λ : B ( H m 2 ⊗ ⋯ ⊗ H m k ) → B ( H m 1 ) and a state ρ 0 ∈ S ( H m 1 ⊗ H m 1 ) , such that Tr ( W ρ ) &lt; 0 , where W = ( Id ⊗ Λ † ) ρ 0 is an entanglement witness. In addition, several different methods of constructing entanglement witnesses for multipartite states are also given.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-018-1952-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1741-0711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2018-07, Vol.17 (7), p.1-8, Article 181
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2053433079
source Springer Nature
subjects Data Structures and Information Theory
Hilbert space
Mathematical Physics
Physics
Physics and Astronomy
Quantum Computing
Quantum entanglement
Quantum Information Technology
Quantum Physics
Quantum theory
Spintronics
title Entanglement witness criteria of strong-k-separability for multipartite quantum states
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entanglement%20witness%20criteria%20of%20strong-k-separability%20for%20multipartite%20quantum%20states&rft.jtitle=Quantum%20information%20processing&rft.au=Yan,%20Siqing&rft.date=2018-07-01&rft.volume=17&rft.issue=7&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=181&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-018-1952-4&rft_dat=%3Cproquest_cross%3E2053433079%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-4e3e5cec07b9109e7fa7a738766026d7d82ba59610286b1c29cb591feb26440d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2053433079&rft_id=info:pmid/&rfr_iscdi=true