Loading…

Long-Term Validation of TerraSAR-X and TanDEM-X Orbit Solutions with Laser and Radar Measurements

Precise orbit determination solutions for the two spacecrafts TerraSAR-X (TSX) and TanDEM-X (TDX) are operationally computed at the German Space Operations Center (GSOC/DLR). This publication makes use of 6 years of TSX and TDX orbit solutions for a detailed orbit validation. The validation compares...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Switzerland), 2018-05, Vol.10 (5), p.762
Main Authors: Hackel, Stefan, Gisinger, Christoph, Balss, Ulrich, Wermuth, Martin, Montenbruck, Oliver
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Precise orbit determination solutions for the two spacecrafts TerraSAR-X (TSX) and TanDEM-X (TDX) are operationally computed at the German Space Operations Center (GSOC/DLR). This publication makes use of 6 years of TSX and TDX orbit solutions for a detailed orbit validation. The validation compares the standard orbit products with newly determined enhanced orbit solutions, which additionally consider GPS ambiguity fixing and utilize a macro model for modeling non-gravitational forces. The technique of satellite laser ranging (SLR) serves as a key measure for validating the derived orbit solutions. In addition, the synthetic aperture radar (SAR) instruments on-board both spacecrafts are for the first time employed for orbit validation. Both the microwave instrument and the optical laser approach are compared and assessed. The average SLR residuals, obtained from the TSX and TDX enhanced orbit solutions within the analysis period, are at 1.6 ± 11.4 mm ( 1 σ ) and 1.2 ± 12.5 mm, respectively. Compared to the standard orbit products, this is an improvement of 33 % in standard deviation. The corresponding radar range biases are in the same order and amount to − 3.5 ± 12.5 mm and 4.5 ± 14.9 mm. Along with the millimeter level position offsets in radial, along-track and cross-track inferred from the SLR data on a monthly basis, the results confirm the advantage of the enhanced orbit solutions over the standard orbit products.
ISSN:2072-4292
2072-4292
DOI:10.3390/rs10050762