Loading…

Performance Evaluation of an Explicit Lightning Forecasting System

In this study, an explicit electrification and lightning parameterization scheme implemented within the Weather Research and Forecasting model (E‐WRF, Fierro et al., , https://doi.org/10.1175/MWR‐D‐12‐00278.1) is evaluated against selected lightning diagnostic schemes. Convection‐permitting simulati...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Atmospheres 2018-05, Vol.123 (10), p.5130-5148
Main Authors: Dafis, S., Fierro, A., Giannaros, T. M., Kotroni, V., Lagouvardos, K., Mansell, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4116-59433a11ebef9738f70f3603d76174b37613ade7c5c70ebf0c9b2e0cff9b98f93
cites cdi_FETCH-LOGICAL-c4116-59433a11ebef9738f70f3603d76174b37613ade7c5c70ebf0c9b2e0cff9b98f93
container_end_page 5148
container_issue 10
container_start_page 5130
container_title Journal of geophysical research. Atmospheres
container_volume 123
creator Dafis, S.
Fierro, A.
Giannaros, T. M.
Kotroni, V.
Lagouvardos, K.
Mansell, E.
description In this study, an explicit electrification and lightning parameterization scheme implemented within the Weather Research and Forecasting model (E‐WRF, Fierro et al., , https://doi.org/10.1175/MWR‐D‐12‐00278.1) is evaluated against selected lightning diagnostic schemes. Convection‐permitting simulations of 10 high‐impact weather case studies over Greece are compared against lightning observations from the ZEUS ground‐based lightning detection network. The model's ability to accurately simulate these convective events is first evaluated through statistical scores of accumulated rainfall. The simulated flash origin density (FOD) fields are then assessed using statistical neighborhood methods. Overall, the simulated FOD fields have good agreement with the observations. Most of the lightning activity over the sea, however, is generally poorly forecasted. Lightning‐producing events over the sea near Greece mainly occur during the cold season. Thus, lightning forecast with E‐WRF appear to have better skill during the warm season. The simulated areal coverage of FOD using E‐WRF also reduces the false alarms of lightning activity both over land and sea compared to a well‐documented diagnostic lightning prediction scheme. Given its relatively low computational cost, these results support the potential use of E‐WRF for real‐time lightning predictions at convection‐allowing scales. Key Points Lightning and precipitation verification procedures Explicit lightning forecasting outperforms empirically derived diagnostics
doi_str_mv 10.1029/2017JD027930
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2056433314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056433314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4116-59433a11ebef9738f70f3603d76174b37613ade7c5c70ebf0c9b2e0cff9b98f93</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWGpv_oAFr66-2WSTzVH7paWg-AHeQjZNasp2U5Nda_-9WyriybnMHB5mYBA6x3CFIRPXGWA-G0HGBYEj1MswE2khBDv-zfztFA1iXEGnAgjNaQ_dPppgfVirWptk_KmqVjXO14m3iaqT8demcto1ydwt35va1ctk4oPRKjb7_LyLjVmfoROrqmgGP95Hr5Pxy_AunT9M74c381RTjFmaC0qIwtiUxgpOCsvBEgZkwRnmtCSdEbUwXOeagyktaFFmBrS1ohSFFaSPLg69m-A_WhMbufJtqLtJmUHOunaCaUddHigdfIzBWLkJbq3CTmKQ-6Pk36M6nBzwravM7l9WzqZPo5wyysg3hg5oqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056433314</pqid></control><display><type>article</type><title>Performance Evaluation of an Explicit Lightning Forecasting System</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Alma/SFX Local Collection</source><creator>Dafis, S. ; Fierro, A. ; Giannaros, T. M. ; Kotroni, V. ; Lagouvardos, K. ; Mansell, E.</creator><creatorcontrib>Dafis, S. ; Fierro, A. ; Giannaros, T. M. ; Kotroni, V. ; Lagouvardos, K. ; Mansell, E.</creatorcontrib><description>In this study, an explicit electrification and lightning parameterization scheme implemented within the Weather Research and Forecasting model (E‐WRF, Fierro et al., , https://doi.org/10.1175/MWR‐D‐12‐00278.1) is evaluated against selected lightning diagnostic schemes. Convection‐permitting simulations of 10 high‐impact weather case studies over Greece are compared against lightning observations from the ZEUS ground‐based lightning detection network. The model's ability to accurately simulate these convective events is first evaluated through statistical scores of accumulated rainfall. The simulated flash origin density (FOD) fields are then assessed using statistical neighborhood methods. Overall, the simulated FOD fields have good agreement with the observations. Most of the lightning activity over the sea, however, is generally poorly forecasted. Lightning‐producing events over the sea near Greece mainly occur during the cold season. Thus, lightning forecast with E‐WRF appear to have better skill during the warm season. The simulated areal coverage of FOD using E‐WRF also reduces the false alarms of lightning activity both over land and sea compared to a well‐documented diagnostic lightning prediction scheme. Given its relatively low computational cost, these results support the potential use of E‐WRF for real‐time lightning predictions at convection‐allowing scales. Key Points Lightning and precipitation verification procedures Explicit lightning forecasting outperforms empirically derived diagnostics</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2017JD027930</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Case studies ; Cold season ; Computer applications ; Computer simulation ; Convection ; Detection ; Diagnostic systems ; Electrification ; False alarms ; Fields ; Geophysics ; high‐impact weather ; Lightning ; Lightning activity ; Lightning detection ; lightning forecasting ; Mathematical models ; Parameterization ; Performance evaluation ; Rain ; Rainfall ; Residential density ; Statistical methods ; Statistics ; verification ; Warm seasons ; Weather forecasting</subject><ispartof>Journal of geophysical research. Atmospheres, 2018-05, Vol.123 (10), p.5130-5148</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4116-59433a11ebef9738f70f3603d76174b37613ade7c5c70ebf0c9b2e0cff9b98f93</citedby><cites>FETCH-LOGICAL-c4116-59433a11ebef9738f70f3603d76174b37613ade7c5c70ebf0c9b2e0cff9b98f93</cites><orcidid>0000-0002-1513-1930 ; 0000-0002-7561-0781 ; 0000-0002-4859-1255</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Dafis, S.</creatorcontrib><creatorcontrib>Fierro, A.</creatorcontrib><creatorcontrib>Giannaros, T. M.</creatorcontrib><creatorcontrib>Kotroni, V.</creatorcontrib><creatorcontrib>Lagouvardos, K.</creatorcontrib><creatorcontrib>Mansell, E.</creatorcontrib><title>Performance Evaluation of an Explicit Lightning Forecasting System</title><title>Journal of geophysical research. Atmospheres</title><description>In this study, an explicit electrification and lightning parameterization scheme implemented within the Weather Research and Forecasting model (E‐WRF, Fierro et al., , https://doi.org/10.1175/MWR‐D‐12‐00278.1) is evaluated against selected lightning diagnostic schemes. Convection‐permitting simulations of 10 high‐impact weather case studies over Greece are compared against lightning observations from the ZEUS ground‐based lightning detection network. The model's ability to accurately simulate these convective events is first evaluated through statistical scores of accumulated rainfall. The simulated flash origin density (FOD) fields are then assessed using statistical neighborhood methods. Overall, the simulated FOD fields have good agreement with the observations. Most of the lightning activity over the sea, however, is generally poorly forecasted. Lightning‐producing events over the sea near Greece mainly occur during the cold season. Thus, lightning forecast with E‐WRF appear to have better skill during the warm season. The simulated areal coverage of FOD using E‐WRF also reduces the false alarms of lightning activity both over land and sea compared to a well‐documented diagnostic lightning prediction scheme. Given its relatively low computational cost, these results support the potential use of E‐WRF for real‐time lightning predictions at convection‐allowing scales. Key Points Lightning and precipitation verification procedures Explicit lightning forecasting outperforms empirically derived diagnostics</description><subject>Case studies</subject><subject>Cold season</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Convection</subject><subject>Detection</subject><subject>Diagnostic systems</subject><subject>Electrification</subject><subject>False alarms</subject><subject>Fields</subject><subject>Geophysics</subject><subject>high‐impact weather</subject><subject>Lightning</subject><subject>Lightning activity</subject><subject>Lightning detection</subject><subject>lightning forecasting</subject><subject>Mathematical models</subject><subject>Parameterization</subject><subject>Performance evaluation</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Residential density</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>verification</subject><subject>Warm seasons</subject><subject>Weather forecasting</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEYhIMoWGpv_oAFr66-2WSTzVH7paWg-AHeQjZNasp2U5Nda_-9WyriybnMHB5mYBA6x3CFIRPXGWA-G0HGBYEj1MswE2khBDv-zfztFA1iXEGnAgjNaQ_dPppgfVirWptk_KmqVjXO14m3iaqT8demcto1ydwt35va1ctk4oPRKjb7_LyLjVmfoROrqmgGP95Hr5Pxy_AunT9M74c381RTjFmaC0qIwtiUxgpOCsvBEgZkwRnmtCSdEbUwXOeagyktaFFmBrS1ohSFFaSPLg69m-A_WhMbufJtqLtJmUHOunaCaUddHigdfIzBWLkJbq3CTmKQ-6Pk36M6nBzwravM7l9WzqZPo5wyysg3hg5oqw</recordid><startdate>20180527</startdate><enddate>20180527</enddate><creator>Dafis, S.</creator><creator>Fierro, A.</creator><creator>Giannaros, T. M.</creator><creator>Kotroni, V.</creator><creator>Lagouvardos, K.</creator><creator>Mansell, E.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1513-1930</orcidid><orcidid>https://orcid.org/0000-0002-7561-0781</orcidid><orcidid>https://orcid.org/0000-0002-4859-1255</orcidid></search><sort><creationdate>20180527</creationdate><title>Performance Evaluation of an Explicit Lightning Forecasting System</title><author>Dafis, S. ; Fierro, A. ; Giannaros, T. M. ; Kotroni, V. ; Lagouvardos, K. ; Mansell, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4116-59433a11ebef9738f70f3603d76174b37613ade7c5c70ebf0c9b2e0cff9b98f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Case studies</topic><topic>Cold season</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Convection</topic><topic>Detection</topic><topic>Diagnostic systems</topic><topic>Electrification</topic><topic>False alarms</topic><topic>Fields</topic><topic>Geophysics</topic><topic>high‐impact weather</topic><topic>Lightning</topic><topic>Lightning activity</topic><topic>Lightning detection</topic><topic>lightning forecasting</topic><topic>Mathematical models</topic><topic>Parameterization</topic><topic>Performance evaluation</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Residential density</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>verification</topic><topic>Warm seasons</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dafis, S.</creatorcontrib><creatorcontrib>Fierro, A.</creatorcontrib><creatorcontrib>Giannaros, T. M.</creatorcontrib><creatorcontrib>Kotroni, V.</creatorcontrib><creatorcontrib>Lagouvardos, K.</creatorcontrib><creatorcontrib>Mansell, E.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dafis, S.</au><au>Fierro, A.</au><au>Giannaros, T. M.</au><au>Kotroni, V.</au><au>Lagouvardos, K.</au><au>Mansell, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Evaluation of an Explicit Lightning Forecasting System</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><date>2018-05-27</date><risdate>2018</risdate><volume>123</volume><issue>10</issue><spage>5130</spage><epage>5148</epage><pages>5130-5148</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>In this study, an explicit electrification and lightning parameterization scheme implemented within the Weather Research and Forecasting model (E‐WRF, Fierro et al., , https://doi.org/10.1175/MWR‐D‐12‐00278.1) is evaluated against selected lightning diagnostic schemes. Convection‐permitting simulations of 10 high‐impact weather case studies over Greece are compared against lightning observations from the ZEUS ground‐based lightning detection network. The model's ability to accurately simulate these convective events is first evaluated through statistical scores of accumulated rainfall. The simulated flash origin density (FOD) fields are then assessed using statistical neighborhood methods. Overall, the simulated FOD fields have good agreement with the observations. Most of the lightning activity over the sea, however, is generally poorly forecasted. Lightning‐producing events over the sea near Greece mainly occur during the cold season. Thus, lightning forecast with E‐WRF appear to have better skill during the warm season. The simulated areal coverage of FOD using E‐WRF also reduces the false alarms of lightning activity both over land and sea compared to a well‐documented diagnostic lightning prediction scheme. Given its relatively low computational cost, these results support the potential use of E‐WRF for real‐time lightning predictions at convection‐allowing scales. Key Points Lightning and precipitation verification procedures Explicit lightning forecasting outperforms empirically derived diagnostics</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2017JD027930</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1513-1930</orcidid><orcidid>https://orcid.org/0000-0002-7561-0781</orcidid><orcidid>https://orcid.org/0000-0002-4859-1255</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2018-05, Vol.123 (10), p.5130-5148
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_journals_2056433314
source Wiley-Blackwell Read & Publish Collection; Alma/SFX Local Collection
subjects Case studies
Cold season
Computer applications
Computer simulation
Convection
Detection
Diagnostic systems
Electrification
False alarms
Fields
Geophysics
high‐impact weather
Lightning
Lightning activity
Lightning detection
lightning forecasting
Mathematical models
Parameterization
Performance evaluation
Rain
Rainfall
Residential density
Statistical methods
Statistics
verification
Warm seasons
Weather forecasting
title Performance Evaluation of an Explicit Lightning Forecasting System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A19%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Evaluation%20of%20an%20Explicit%20Lightning%20Forecasting%20System&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Dafis,%20S.&rft.date=2018-05-27&rft.volume=123&rft.issue=10&rft.spage=5130&rft.epage=5148&rft.pages=5130-5148&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1029/2017JD027930&rft_dat=%3Cproquest_cross%3E2056433314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4116-59433a11ebef9738f70f3603d76174b37613ade7c5c70ebf0c9b2e0cff9b98f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056433314&rft_id=info:pmid/&rfr_iscdi=true