Loading…
Size reduction of Ge-on-Si photodetectors via a photonic bandgap
This work shrinks down the size of Ge-on-Si photodetectors to reduce the dark current and maintain the optical responsivity by surrounding photonic crystals. Numerical simulation shows that the employment of photonic crystal in the Si slab effectively prohibits the radiation modes from those guided...
Saved in:
Published in: | Applied optics (2004) 2018-04, Vol.57 (12), p.2962 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-cb3930192aceceaca8c65caaeb36a50f9eeaf8dcc9c3705d65597560bed9fbf53 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-cb3930192aceceaca8c65caaeb36a50f9eeaf8dcc9c3705d65597560bed9fbf53 |
container_end_page | |
container_issue | 12 |
container_start_page | 2962 |
container_title | Applied optics (2004) |
container_volume | 57 |
creator | Zhou, Haifeng Sun, Yiling |
description | This work shrinks down the size of Ge-on-Si photodetectors to reduce the dark current and maintain the optical responsivity by surrounding photonic crystals. Numerical simulation shows that the employment of photonic crystal in the Si slab effectively prohibits the radiation modes from those guided outgoing waves and facilitates light cyclic absorption in the epitaxial Ge region. A photodetector with a 5 μm long Ge absorption region is demonstrated with a dark current of 150 nA (1 μA up to 70°C), a 3 dB bandwidth of 17 GHz, and a responsivity of 0.75 A/W. |
doi_str_mv | 10.1364/AO.57.002962 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2056461463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056461463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-cb3930192aceceaca8c65caaeb36a50f9eeaf8dcc9c3705d65597560bed9fbf53</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMotlZvniXg1dR8bLLNzVK0CoUequAtZJNZ3WI3a7Jb0F_vylZP8zI8vDM8CF0yOmVCZbfz9VTmU0q5VvwIjTmTkgim5DEa91ETxmevI3SW0pZSITOdn6IR1znLhKBjdLepvgFH8J1rq1DjUOIlkFCTTYWb99AGDy24NsSE95XFdljWlcOFrf2bbc7RSWk_Elwc5gS9PNw_Lx7Jar18WsxXxAmmW-IKoQVlmlsHDqyzM6eksxYKoaykpQaw5cw7p53IqfSqfz2XihbgdVmUUkzQ9dDbxPDZQWrNNnSx7k8aTqXKFMuU6KmbgXIxpBShNE2sdjZ-GUbNry4zXxuZm0FXj18dSrtiB_4f_vMjfgBU7WVO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056461463</pqid></control><display><type>article</type><title>Size reduction of Ge-on-Si photodetectors via a photonic bandgap</title><source>OSA Publishing</source><creator>Zhou, Haifeng ; Sun, Yiling</creator><creatorcontrib>Zhou, Haifeng ; Sun, Yiling</creatorcontrib><description>This work shrinks down the size of Ge-on-Si photodetectors to reduce the dark current and maintain the optical responsivity by surrounding photonic crystals. Numerical simulation shows that the employment of photonic crystal in the Si slab effectively prohibits the radiation modes from those guided outgoing waves and facilitates light cyclic absorption in the epitaxial Ge region. A photodetector with a 5 μm long Ge absorption region is demonstrated with a dark current of 150 nA (1 μA up to 70°C), a 3 dB bandwidth of 17 GHz, and a responsivity of 0.75 A/W.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.57.002962</identifier><identifier>PMID: 29714330</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Absorption ; Computer simulation ; Dark current ; Energy gap ; Germanium ; Photometers ; Photonic band gaps ; Photonic crystals ; Silicon ; Size reduction</subject><ispartof>Applied optics (2004), 2018-04, Vol.57 (12), p.2962</ispartof><rights>Copyright Optical Society of America Apr 20, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-cb3930192aceceaca8c65caaeb36a50f9eeaf8dcc9c3705d65597560bed9fbf53</citedby><cites>FETCH-LOGICAL-c319t-cb3930192aceceaca8c65caaeb36a50f9eeaf8dcc9c3705d65597560bed9fbf53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3257,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29714330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Haifeng</creatorcontrib><creatorcontrib>Sun, Yiling</creatorcontrib><title>Size reduction of Ge-on-Si photodetectors via a photonic bandgap</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>This work shrinks down the size of Ge-on-Si photodetectors to reduce the dark current and maintain the optical responsivity by surrounding photonic crystals. Numerical simulation shows that the employment of photonic crystal in the Si slab effectively prohibits the radiation modes from those guided outgoing waves and facilitates light cyclic absorption in the epitaxial Ge region. A photodetector with a 5 μm long Ge absorption region is demonstrated with a dark current of 150 nA (1 μA up to 70°C), a 3 dB bandwidth of 17 GHz, and a responsivity of 0.75 A/W.</description><subject>Absorption</subject><subject>Computer simulation</subject><subject>Dark current</subject><subject>Energy gap</subject><subject>Germanium</subject><subject>Photometers</subject><subject>Photonic band gaps</subject><subject>Photonic crystals</subject><subject>Silicon</subject><subject>Size reduction</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMotlZvniXg1dR8bLLNzVK0CoUequAtZJNZ3WI3a7Jb0F_vylZP8zI8vDM8CF0yOmVCZbfz9VTmU0q5VvwIjTmTkgim5DEa91ETxmevI3SW0pZSITOdn6IR1znLhKBjdLepvgFH8J1rq1DjUOIlkFCTTYWb99AGDy24NsSE95XFdljWlcOFrf2bbc7RSWk_Elwc5gS9PNw_Lx7Jar18WsxXxAmmW-IKoQVlmlsHDqyzM6eksxYKoaykpQaw5cw7p53IqfSqfz2XihbgdVmUUkzQ9dDbxPDZQWrNNnSx7k8aTqXKFMuU6KmbgXIxpBShNE2sdjZ-GUbNry4zXxuZm0FXj18dSrtiB_4f_vMjfgBU7WVO</recordid><startdate>20180420</startdate><enddate>20180420</enddate><creator>Zhou, Haifeng</creator><creator>Sun, Yiling</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20180420</creationdate><title>Size reduction of Ge-on-Si photodetectors via a photonic bandgap</title><author>Zhou, Haifeng ; Sun, Yiling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-cb3930192aceceaca8c65caaeb36a50f9eeaf8dcc9c3705d65597560bed9fbf53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Computer simulation</topic><topic>Dark current</topic><topic>Energy gap</topic><topic>Germanium</topic><topic>Photometers</topic><topic>Photonic band gaps</topic><topic>Photonic crystals</topic><topic>Silicon</topic><topic>Size reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Haifeng</creatorcontrib><creatorcontrib>Sun, Yiling</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Haifeng</au><au>Sun, Yiling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size reduction of Ge-on-Si photodetectors via a photonic bandgap</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2018-04-20</date><risdate>2018</risdate><volume>57</volume><issue>12</issue><spage>2962</spage><pages>2962-</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>This work shrinks down the size of Ge-on-Si photodetectors to reduce the dark current and maintain the optical responsivity by surrounding photonic crystals. Numerical simulation shows that the employment of photonic crystal in the Si slab effectively prohibits the radiation modes from those guided outgoing waves and facilitates light cyclic absorption in the epitaxial Ge region. A photodetector with a 5 μm long Ge absorption region is demonstrated with a dark current of 150 nA (1 μA up to 70°C), a 3 dB bandwidth of 17 GHz, and a responsivity of 0.75 A/W.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>29714330</pmid><doi>10.1364/AO.57.002962</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2018-04, Vol.57 (12), p.2962 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_journals_2056461463 |
source | OSA Publishing |
subjects | Absorption Computer simulation Dark current Energy gap Germanium Photometers Photonic band gaps Photonic crystals Silicon Size reduction |
title | Size reduction of Ge-on-Si photodetectors via a photonic bandgap |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20reduction%20of%20Ge-on-Si%20photodetectors%20via%20a%20photonic%20bandgap&rft.jtitle=Applied%20optics%20(2004)&rft.au=Zhou,%20Haifeng&rft.date=2018-04-20&rft.volume=57&rft.issue=12&rft.spage=2962&rft.pages=2962-&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.57.002962&rft_dat=%3Cproquest_cross%3E2056461463%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-cb3930192aceceaca8c65caaeb36a50f9eeaf8dcc9c3705d65597560bed9fbf53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056461463&rft_id=info:pmid/29714330&rfr_iscdi=true |