Loading…
Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells
This study focuses on the transient analysis of diffusion of a contaminant ejected by an external source into a laminar flow of recovered water. The influence of density variation with contaminant concentration is approximated according to the Boussinesq approximation. On the basis of momentum conse...
Saved in:
Published in: | Water, air, and soil pollution air, and soil pollution, 2018-07, Vol.229 (7), p.1-15, Article 221 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c355t-83c683a05910d8cee338e8f8d79a2b4761891b580a811380708191808208dcc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c355t-83c683a05910d8cee338e8f8d79a2b4761891b580a811380708191808208dcc73 |
container_end_page | 15 |
container_issue | 7 |
container_start_page | 1 |
container_title | Water, air, and soil pollution |
container_volume | 229 |
creator | Liu, Zhi-bin Dong, Xiao-xu Min, Chao |
description | This study focuses on the transient analysis of diffusion of a contaminant ejected by an external source into a laminar flow of recovered water. The influence of density variation with contaminant concentration is approximated according to the Boussinesq approximation. On the basis of momentum conservation and mass conservation theory, recovered water flow and mass transfer partial differential equations (PDEs) describing contaminant diffusion are obtained. This problem under three kinds of boundary conditions is solved analytically using Laplace transform method. By comparing the actual measured concentration in horizontal well of X shale gas reservoir and the concentration obtained from the models, the type of boundary conditions of X shale gas reservoir is determined. After that, sensitivity analysis of the influence of each parameter on the concentration of contaminant is presented. The determination of boundary condition type can determine the fracture form, which provides the basis for the flow and diffusion of the fluid in the fracture. The model also can be quite useful for available necessary early warning methods for detecting or predicting contaminant concentration and hence help mitigate related environmental pollution by earlier instituting relevant decontamination measures. |
doi_str_mv | 10.1007/s11270-018-3870-6 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2056621762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543515238</galeid><sourcerecordid>A543515238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-83c683a05910d8cee338e8f8d79a2b4761891b580a811380708191808208dcc73</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLcFz6szSbOZHEv9qCB4UBFPId1mNbJNNNke9NebuoInk0OG4XmGycvYCcIZAqjzjMgV1IBUCypFs8MmKJWouRZ8l00AprputNL77CDnNyhHk5qw54dkQ_YuDNUs2P4z-1zFrprHMNi1D7b0L3zXbbKPofKhGl5d9eT6fhmT24L3r7Z31bXN1SIm_7XV-h8gH7G9zvbZHf--h-zx6vJhvqhv765v5rPbuhVSDjWJtiFhQWqEFbXOCUGOOlopbflyqhokjUtJYAlRECgg1EhAHGjVtkocstNx7nuKHxuXB_MWN6n8JRsOsmk4qoYX6mykXsq-xocuDsm25a7c2rcxuM6X_kxOhUTJBRUBR6FNMefkOvOe_NqmT4NgtpGbMXJTIjfbyE1THD46ubDhxaW_Vf6XvgFBtYGm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056621762</pqid></control><display><type>article</type><title>Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Liu, Zhi-bin ; Dong, Xiao-xu ; Min, Chao</creator><creatorcontrib>Liu, Zhi-bin ; Dong, Xiao-xu ; Min, Chao</creatorcontrib><description>This study focuses on the transient analysis of diffusion of a contaminant ejected by an external source into a laminar flow of recovered water. The influence of density variation with contaminant concentration is approximated according to the Boussinesq approximation. On the basis of momentum conservation and mass conservation theory, recovered water flow and mass transfer partial differential equations (PDEs) describing contaminant diffusion are obtained. This problem under three kinds of boundary conditions is solved analytically using Laplace transform method. By comparing the actual measured concentration in horizontal well of X shale gas reservoir and the concentration obtained from the models, the type of boundary conditions of X shale gas reservoir is determined. After that, sensitivity analysis of the influence of each parameter on the concentration of contaminant is presented. The determination of boundary condition type can determine the fracture form, which provides the basis for the flow and diffusion of the fluid in the fracture. The model also can be quite useful for available necessary early warning methods for detecting or predicting contaminant concentration and hence help mitigate related environmental pollution by earlier instituting relevant decontamination measures.</description><identifier>ISSN: 0049-6979</identifier><identifier>EISSN: 1573-2932</identifier><identifier>DOI: 10.1007/s11270-018-3870-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Approximation ; Atmospheric Protection/Air Quality Control/Air Pollution ; Boundary conditions ; Boussinesq approximation ; Climate Change/Climate Change Impacts ; Conservation ; Conservation of momentum ; Contaminants ; Decontamination ; Differential equations ; Diffusion ; Dye dispersion ; Earth and Environmental Science ; Ejection ; Environment ; Environmental monitoring ; Horizontal wells ; Hydraulic flow ; Hydrogeology ; Laminar flow ; Laplace transforms ; Mass transfer ; Mathematical models ; Momentum ; Parameter sensitivity ; Partial differential equations ; Reservoirs ; Sedimentary rocks ; Sensitivity analysis ; Shale ; Shale gas ; Shale oils ; Shales ; Soil Science & Conservation ; Transient analysis ; Water conservation ; Water flow ; Water pollution ; Water Quality/Water Pollution</subject><ispartof>Water, air, and soil pollution, 2018-07, Vol.229 (7), p.1-15, Article 221</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Water, Air, & Soil Pollution is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-83c683a05910d8cee338e8f8d79a2b4761891b580a811380708191808208dcc73</citedby><cites>FETCH-LOGICAL-c355t-83c683a05910d8cee338e8f8d79a2b4761891b580a811380708191808208dcc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2056621762/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2056621762?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Liu, Zhi-bin</creatorcontrib><creatorcontrib>Dong, Xiao-xu</creatorcontrib><creatorcontrib>Min, Chao</creatorcontrib><title>Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells</title><title>Water, air, and soil pollution</title><addtitle>Water Air Soil Pollut</addtitle><description>This study focuses on the transient analysis of diffusion of a contaminant ejected by an external source into a laminar flow of recovered water. The influence of density variation with contaminant concentration is approximated according to the Boussinesq approximation. On the basis of momentum conservation and mass conservation theory, recovered water flow and mass transfer partial differential equations (PDEs) describing contaminant diffusion are obtained. This problem under three kinds of boundary conditions is solved analytically using Laplace transform method. By comparing the actual measured concentration in horizontal well of X shale gas reservoir and the concentration obtained from the models, the type of boundary conditions of X shale gas reservoir is determined. After that, sensitivity analysis of the influence of each parameter on the concentration of contaminant is presented. The determination of boundary condition type can determine the fracture form, which provides the basis for the flow and diffusion of the fluid in the fracture. The model also can be quite useful for available necessary early warning methods for detecting or predicting contaminant concentration and hence help mitigate related environmental pollution by earlier instituting relevant decontamination measures.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Boundary conditions</subject><subject>Boussinesq approximation</subject><subject>Climate Change/Climate Change Impacts</subject><subject>Conservation</subject><subject>Conservation of momentum</subject><subject>Contaminants</subject><subject>Decontamination</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Earth and Environmental Science</subject><subject>Ejection</subject><subject>Environment</subject><subject>Environmental monitoring</subject><subject>Horizontal wells</subject><subject>Hydraulic flow</subject><subject>Hydrogeology</subject><subject>Laminar flow</subject><subject>Laplace transforms</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Momentum</subject><subject>Parameter sensitivity</subject><subject>Partial differential equations</subject><subject>Reservoirs</subject><subject>Sedimentary rocks</subject><subject>Sensitivity analysis</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shale oils</subject><subject>Shales</subject><subject>Soil Science & Conservation</subject><subject>Transient analysis</subject><subject>Water conservation</subject><subject>Water flow</subject><subject>Water pollution</subject><subject>Water Quality/Water Pollution</subject><issn>0049-6979</issn><issn>1573-2932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LAzEQhoMoWD9-gLcFz6szSbOZHEv9qCB4UBFPId1mNbJNNNke9NebuoInk0OG4XmGycvYCcIZAqjzjMgV1IBUCypFs8MmKJWouRZ8l00AprputNL77CDnNyhHk5qw54dkQ_YuDNUs2P4z-1zFrprHMNi1D7b0L3zXbbKPofKhGl5d9eT6fhmT24L3r7Z31bXN1SIm_7XV-h8gH7G9zvbZHf--h-zx6vJhvqhv765v5rPbuhVSDjWJtiFhQWqEFbXOCUGOOlopbflyqhokjUtJYAlRECgg1EhAHGjVtkocstNx7nuKHxuXB_MWN6n8JRsOsmk4qoYX6mykXsq-xocuDsm25a7c2rcxuM6X_kxOhUTJBRUBR6FNMefkOvOe_NqmT4NgtpGbMXJTIjfbyE1THD46ubDhxaW_Vf6XvgFBtYGm</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Liu, Zhi-bin</creator><creator>Dong, Xiao-xu</creator><creator>Min, Chao</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7T7</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells</title><author>Liu, Zhi-bin ; Dong, Xiao-xu ; Min, Chao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-83c683a05910d8cee338e8f8d79a2b4761891b580a811380708191808208dcc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Boundary conditions</topic><topic>Boussinesq approximation</topic><topic>Climate Change/Climate Change Impacts</topic><topic>Conservation</topic><topic>Conservation of momentum</topic><topic>Contaminants</topic><topic>Decontamination</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Earth and Environmental Science</topic><topic>Ejection</topic><topic>Environment</topic><topic>Environmental monitoring</topic><topic>Horizontal wells</topic><topic>Hydraulic flow</topic><topic>Hydrogeology</topic><topic>Laminar flow</topic><topic>Laplace transforms</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Momentum</topic><topic>Parameter sensitivity</topic><topic>Partial differential equations</topic><topic>Reservoirs</topic><topic>Sedimentary rocks</topic><topic>Sensitivity analysis</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shale oils</topic><topic>Shales</topic><topic>Soil Science & Conservation</topic><topic>Transient analysis</topic><topic>Water conservation</topic><topic>Water flow</topic><topic>Water pollution</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhi-bin</creatorcontrib><creatorcontrib>Dong, Xiao-xu</creatorcontrib><creatorcontrib>Min, Chao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM global</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Water, air, and soil pollution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhi-bin</au><au>Dong, Xiao-xu</au><au>Min, Chao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells</atitle><jtitle>Water, air, and soil pollution</jtitle><stitle>Water Air Soil Pollut</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>229</volume><issue>7</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>221</artnum><issn>0049-6979</issn><eissn>1573-2932</eissn><abstract>This study focuses on the transient analysis of diffusion of a contaminant ejected by an external source into a laminar flow of recovered water. The influence of density variation with contaminant concentration is approximated according to the Boussinesq approximation. On the basis of momentum conservation and mass conservation theory, recovered water flow and mass transfer partial differential equations (PDEs) describing contaminant diffusion are obtained. This problem under three kinds of boundary conditions is solved analytically using Laplace transform method. By comparing the actual measured concentration in horizontal well of X shale gas reservoir and the concentration obtained from the models, the type of boundary conditions of X shale gas reservoir is determined. After that, sensitivity analysis of the influence of each parameter on the concentration of contaminant is presented. The determination of boundary condition type can determine the fracture form, which provides the basis for the flow and diffusion of the fluid in the fracture. The model also can be quite useful for available necessary early warning methods for detecting or predicting contaminant concentration and hence help mitigate related environmental pollution by earlier instituting relevant decontamination measures.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11270-018-3870-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0049-6979 |
ispartof | Water, air, and soil pollution, 2018-07, Vol.229 (7), p.1-15, Article 221 |
issn | 0049-6979 1573-2932 |
language | eng |
recordid | cdi_proquest_journals_2056621762 |
source | ABI/INFORM global; Springer Nature |
subjects | Analysis Approximation Atmospheric Protection/Air Quality Control/Air Pollution Boundary conditions Boussinesq approximation Climate Change/Climate Change Impacts Conservation Conservation of momentum Contaminants Decontamination Differential equations Diffusion Dye dispersion Earth and Environmental Science Ejection Environment Environmental monitoring Horizontal wells Hydraulic flow Hydrogeology Laminar flow Laplace transforms Mass transfer Mathematical models Momentum Parameter sensitivity Partial differential equations Reservoirs Sedimentary rocks Sensitivity analysis Shale Shale gas Shale oils Shales Soil Science & Conservation Transient analysis Water conservation Water flow Water pollution Water Quality/Water Pollution |
title | Transient Analysis of Contaminant Diffusion in the Wellbore of Shale Gas Horizontal Wells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transient%20Analysis%20of%20Contaminant%20Diffusion%20in%20the%20Wellbore%20of%20Shale%20Gas%20Horizontal%20Wells&rft.jtitle=Water,%20air,%20and%20soil%20pollution&rft.au=Liu,%20Zhi-bin&rft.date=2018-07-01&rft.volume=229&rft.issue=7&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=221&rft.issn=0049-6979&rft.eissn=1573-2932&rft_id=info:doi/10.1007/s11270-018-3870-6&rft_dat=%3Cgale_proqu%3EA543515238%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-83c683a05910d8cee338e8f8d79a2b4761891b580a811380708191808208dcc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056621762&rft_id=info:pmid/&rft_galeid=A543515238&rfr_iscdi=true |