Loading…
Surface impurities on giant gypsum crystals from “la Cueva de las Espadas” (Cave of Swords), Naica, Mexico
The Cave of Swords was discovered in 1910 at Naica, Chihuahua, México. During the last century, human presence has changed the microclimate conditions inside this cave, raising the question of whether anthropogenic action resulted in the deterioration of its gypsum single crystals and in the deposit...
Saved in:
Published in: | Mineralogy and petrology 2018-12, Vol.112 (6), p.865-879 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-1b3518102e841ebf622e612d85aa2f8abe111637e5884db336afa1d6601c32933 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-1b3518102e841ebf622e612d85aa2f8abe111637e5884db336afa1d6601c32933 |
container_end_page | 879 |
container_issue | 6 |
container_start_page | 865 |
container_title | Mineralogy and petrology |
container_volume | 112 |
creator | Castillo-Sandoval, Isaí Fuentes-Cobas, Luis E. Pérez-Cazares, Bernardo E. Esparza-Ponce, Hilda E. Fuentes-Montero, María E. Castillo-Michel, Hiram Eichert, Diane Reyes-Cortes, Ignacio Carreño-Márquez, Iván J. Napoles-Duarte, José M. Montero-Cabrera, María E. |
description | The Cave of Swords was discovered in 1910 at Naica, Chihuahua, México. During the last century, human presence has changed the microclimate conditions inside this cave, raising the question of whether anthropogenic action resulted in the deterioration of its gypsum single crystals and in the deposition of impurities on their surfaces. The present work provides a detailed characterization of representative samples of this cave and suggests an answer to the origin of the impurities on the surface of these nature-made large crystals. Laboratory and synchrotron characterization techniques are applied. For the first time, the samples single-crystal nature and the fragmentation effect of impurities are characterized. Synchrotron light diffraction measurements performed on a collection of characteristic samples consistently reveal sharp textures, with crystal reciprocal vectors [0,1,0] preferably perpendicular to the samples principal cleavage planes and orientation widths averaging 8°. X-ray diffraction identifies galena, sphalerite, hematite, goethite and cuprite on the crystals’ surface. Diffraction results indicate no correlation between the number of phases of impurities present and crystallinity. Micro X-ray fluorescence clarifies the elemental spatial distribution. The correlations between the elemental distributions confirm the phase identification obtained by diffraction. For Mn and Pb, the correlations point to the presence of amorphous oxides. Minor phases’ characterization suggests they have been deposited on iron oxy-hydroxide substrates. All the identified phases correspond to minerals that were abundantly present in Naica ore deposit before any anthropogenic activity. The impurities on the surface of gypsum crystals at the Cave of Swords were not produced by human presence. |
doi_str_mv | 10.1007/s00710-018-0586-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2056624342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056624342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1b3518102e841ebf622e612d85aa2f8abe111637e5884db336afa1d6601c32933</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaW2IDUgMdOHHeJqvIjFVgU1tYkcapUzQ92UuiuB4HL9SS4ChIrNjOLee-N3kfIObBrYCy-cX4ACxiogEVKBvEBGUAoVAAg1SEZsLHw15ipY3Li3JIxpiIFA1LNO5tjamhRNp0t2sI4Wld0UWDV0sWmcV1JU7txLa4czW1d0t32a4V00pk10szQFTo6dQ1m6Hbbb3o5wbWhdU7nH7XN3NWIPmOR4og-mc8irU_JUe6TzNnvHpK3u-nr5CGYvdw_Tm5nQSpAtgEkIgIFjBsVgklyybmRwDMVIfJcYWLA9xKxiZQKs0QIiTlCJiWDVPCxEENy0ec2tn7vjGv1su5s5V9qziIpeShC7lXQq1JbO2dNrhtblGg3GpjeY9U9Vu2x6j1WHXsP7z3Oa6uFsX_J_5t-ABbbetc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056624342</pqid></control><display><type>article</type><title>Surface impurities on giant gypsum crystals from “la Cueva de las Espadas” (Cave of Swords), Naica, Mexico</title><source>Springer Link</source><creator>Castillo-Sandoval, Isaí ; Fuentes-Cobas, Luis E. ; Pérez-Cazares, Bernardo E. ; Esparza-Ponce, Hilda E. ; Fuentes-Montero, María E. ; Castillo-Michel, Hiram ; Eichert, Diane ; Reyes-Cortes, Ignacio ; Carreño-Márquez, Iván J. ; Napoles-Duarte, José M. ; Montero-Cabrera, María E.</creator><creatorcontrib>Castillo-Sandoval, Isaí ; Fuentes-Cobas, Luis E. ; Pérez-Cazares, Bernardo E. ; Esparza-Ponce, Hilda E. ; Fuentes-Montero, María E. ; Castillo-Michel, Hiram ; Eichert, Diane ; Reyes-Cortes, Ignacio ; Carreño-Márquez, Iván J. ; Napoles-Duarte, José M. ; Montero-Cabrera, María E.</creatorcontrib><description>The Cave of Swords was discovered in 1910 at Naica, Chihuahua, México. During the last century, human presence has changed the microclimate conditions inside this cave, raising the question of whether anthropogenic action resulted in the deterioration of its gypsum single crystals and in the deposition of impurities on their surfaces. The present work provides a detailed characterization of representative samples of this cave and suggests an answer to the origin of the impurities on the surface of these nature-made large crystals. Laboratory and synchrotron characterization techniques are applied. For the first time, the samples single-crystal nature and the fragmentation effect of impurities are characterized. Synchrotron light diffraction measurements performed on a collection of characteristic samples consistently reveal sharp textures, with crystal reciprocal vectors [0,1,0] preferably perpendicular to the samples principal cleavage planes and orientation widths averaging 8°. X-ray diffraction identifies galena, sphalerite, hematite, goethite and cuprite on the crystals’ surface. Diffraction results indicate no correlation between the number of phases of impurities present and crystallinity. Micro X-ray fluorescence clarifies the elemental spatial distribution. The correlations between the elemental distributions confirm the phase identification obtained by diffraction. For Mn and Pb, the correlations point to the presence of amorphous oxides. Minor phases’ characterization suggests they have been deposited on iron oxy-hydroxide substrates. All the identified phases correspond to minerals that were abundantly present in Naica ore deposit before any anthropogenic activity. The impurities on the surface of gypsum crystals at the Cave of Swords were not produced by human presence.</description><identifier>ISSN: 0930-0708</identifier><identifier>EISSN: 1438-1168</identifier><identifier>DOI: 10.1007/s00710-018-0586-7</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Anthropogenic factors ; Correlation ; Crystals ; Earth and Environmental Science ; Earth Sciences ; Fluorescence ; Galena ; Geochemistry ; Goethite ; Gypsum ; Haematite ; Hematite ; Hydroxides ; Impurities ; Inorganic Chemistry ; Light diffraction ; Manganese ; Microclimate ; Mineral deposits ; Mineralogy ; Minerals ; Orientation ; Original Paper ; Oxides ; Phases ; Single crystals ; Spatial distribution ; Sphalerite ; Substrates ; Vectors ; Weapons ; X-ray diffraction ; X-ray fluorescence ; Zincblende</subject><ispartof>Mineralogy and petrology, 2018-12, Vol.112 (6), p.865-879</ispartof><rights>Springer-Verlag GmbH Austria, part of Springer Nature 2018</rights><rights>Mineralogy and Petrology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1b3518102e841ebf622e612d85aa2f8abe111637e5884db336afa1d6601c32933</citedby><cites>FETCH-LOGICAL-c316t-1b3518102e841ebf622e612d85aa2f8abe111637e5884db336afa1d6601c32933</cites><orcidid>0000-0002-1906-0105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castillo-Sandoval, Isaí</creatorcontrib><creatorcontrib>Fuentes-Cobas, Luis E.</creatorcontrib><creatorcontrib>Pérez-Cazares, Bernardo E.</creatorcontrib><creatorcontrib>Esparza-Ponce, Hilda E.</creatorcontrib><creatorcontrib>Fuentes-Montero, María E.</creatorcontrib><creatorcontrib>Castillo-Michel, Hiram</creatorcontrib><creatorcontrib>Eichert, Diane</creatorcontrib><creatorcontrib>Reyes-Cortes, Ignacio</creatorcontrib><creatorcontrib>Carreño-Márquez, Iván J.</creatorcontrib><creatorcontrib>Napoles-Duarte, José M.</creatorcontrib><creatorcontrib>Montero-Cabrera, María E.</creatorcontrib><title>Surface impurities on giant gypsum crystals from “la Cueva de las Espadas” (Cave of Swords), Naica, Mexico</title><title>Mineralogy and petrology</title><addtitle>Miner Petrol</addtitle><description>The Cave of Swords was discovered in 1910 at Naica, Chihuahua, México. During the last century, human presence has changed the microclimate conditions inside this cave, raising the question of whether anthropogenic action resulted in the deterioration of its gypsum single crystals and in the deposition of impurities on their surfaces. The present work provides a detailed characterization of representative samples of this cave and suggests an answer to the origin of the impurities on the surface of these nature-made large crystals. Laboratory and synchrotron characterization techniques are applied. For the first time, the samples single-crystal nature and the fragmentation effect of impurities are characterized. Synchrotron light diffraction measurements performed on a collection of characteristic samples consistently reveal sharp textures, with crystal reciprocal vectors [0,1,0] preferably perpendicular to the samples principal cleavage planes and orientation widths averaging 8°. X-ray diffraction identifies galena, sphalerite, hematite, goethite and cuprite on the crystals’ surface. Diffraction results indicate no correlation between the number of phases of impurities present and crystallinity. Micro X-ray fluorescence clarifies the elemental spatial distribution. The correlations between the elemental distributions confirm the phase identification obtained by diffraction. For Mn and Pb, the correlations point to the presence of amorphous oxides. Minor phases’ characterization suggests they have been deposited on iron oxy-hydroxide substrates. All the identified phases correspond to minerals that were abundantly present in Naica ore deposit before any anthropogenic activity. The impurities on the surface of gypsum crystals at the Cave of Swords were not produced by human presence.</description><subject>Anthropogenic factors</subject><subject>Correlation</subject><subject>Crystals</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluorescence</subject><subject>Galena</subject><subject>Geochemistry</subject><subject>Goethite</subject><subject>Gypsum</subject><subject>Haematite</subject><subject>Hematite</subject><subject>Hydroxides</subject><subject>Impurities</subject><subject>Inorganic Chemistry</subject><subject>Light diffraction</subject><subject>Manganese</subject><subject>Microclimate</subject><subject>Mineral deposits</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Orientation</subject><subject>Original Paper</subject><subject>Oxides</subject><subject>Phases</subject><subject>Single crystals</subject><subject>Spatial distribution</subject><subject>Sphalerite</subject><subject>Substrates</subject><subject>Vectors</subject><subject>Weapons</subject><subject>X-ray diffraction</subject><subject>X-ray fluorescence</subject><subject>Zincblende</subject><issn>0930-0708</issn><issn>1438-1168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaW2IDUgMdOHHeJqvIjFVgU1tYkcapUzQ92UuiuB4HL9SS4ChIrNjOLee-N3kfIObBrYCy-cX4ACxiogEVKBvEBGUAoVAAg1SEZsLHw15ipY3Li3JIxpiIFA1LNO5tjamhRNp0t2sI4Wld0UWDV0sWmcV1JU7txLa4czW1d0t32a4V00pk10szQFTo6dQ1m6Hbbb3o5wbWhdU7nH7XN3NWIPmOR4og-mc8irU_JUe6TzNnvHpK3u-nr5CGYvdw_Tm5nQSpAtgEkIgIFjBsVgklyybmRwDMVIfJcYWLA9xKxiZQKs0QIiTlCJiWDVPCxEENy0ec2tn7vjGv1su5s5V9qziIpeShC7lXQq1JbO2dNrhtblGg3GpjeY9U9Vu2x6j1WHXsP7z3Oa6uFsX_J_5t-ABbbetc</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Castillo-Sandoval, Isaí</creator><creator>Fuentes-Cobas, Luis E.</creator><creator>Pérez-Cazares, Bernardo E.</creator><creator>Esparza-Ponce, Hilda E.</creator><creator>Fuentes-Montero, María E.</creator><creator>Castillo-Michel, Hiram</creator><creator>Eichert, Diane</creator><creator>Reyes-Cortes, Ignacio</creator><creator>Carreño-Márquez, Iván J.</creator><creator>Napoles-Duarte, José M.</creator><creator>Montero-Cabrera, María E.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-1906-0105</orcidid></search><sort><creationdate>20181201</creationdate><title>Surface impurities on giant gypsum crystals from “la Cueva de las Espadas” (Cave of Swords), Naica, Mexico</title><author>Castillo-Sandoval, Isaí ; Fuentes-Cobas, Luis E. ; Pérez-Cazares, Bernardo E. ; Esparza-Ponce, Hilda E. ; Fuentes-Montero, María E. ; Castillo-Michel, Hiram ; Eichert, Diane ; Reyes-Cortes, Ignacio ; Carreño-Márquez, Iván J. ; Napoles-Duarte, José M. ; Montero-Cabrera, María E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1b3518102e841ebf622e612d85aa2f8abe111637e5884db336afa1d6601c32933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anthropogenic factors</topic><topic>Correlation</topic><topic>Crystals</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluorescence</topic><topic>Galena</topic><topic>Geochemistry</topic><topic>Goethite</topic><topic>Gypsum</topic><topic>Haematite</topic><topic>Hematite</topic><topic>Hydroxides</topic><topic>Impurities</topic><topic>Inorganic Chemistry</topic><topic>Light diffraction</topic><topic>Manganese</topic><topic>Microclimate</topic><topic>Mineral deposits</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Orientation</topic><topic>Original Paper</topic><topic>Oxides</topic><topic>Phases</topic><topic>Single crystals</topic><topic>Spatial distribution</topic><topic>Sphalerite</topic><topic>Substrates</topic><topic>Vectors</topic><topic>Weapons</topic><topic>X-ray diffraction</topic><topic>X-ray fluorescence</topic><topic>Zincblende</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo-Sandoval, Isaí</creatorcontrib><creatorcontrib>Fuentes-Cobas, Luis E.</creatorcontrib><creatorcontrib>Pérez-Cazares, Bernardo E.</creatorcontrib><creatorcontrib>Esparza-Ponce, Hilda E.</creatorcontrib><creatorcontrib>Fuentes-Montero, María E.</creatorcontrib><creatorcontrib>Castillo-Michel, Hiram</creatorcontrib><creatorcontrib>Eichert, Diane</creatorcontrib><creatorcontrib>Reyes-Cortes, Ignacio</creatorcontrib><creatorcontrib>Carreño-Márquez, Iván J.</creatorcontrib><creatorcontrib>Napoles-Duarte, José M.</creatorcontrib><creatorcontrib>Montero-Cabrera, María E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library (ProQuest Database)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo-Sandoval, Isaí</au><au>Fuentes-Cobas, Luis E.</au><au>Pérez-Cazares, Bernardo E.</au><au>Esparza-Ponce, Hilda E.</au><au>Fuentes-Montero, María E.</au><au>Castillo-Michel, Hiram</au><au>Eichert, Diane</au><au>Reyes-Cortes, Ignacio</au><au>Carreño-Márquez, Iván J.</au><au>Napoles-Duarte, José M.</au><au>Montero-Cabrera, María E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface impurities on giant gypsum crystals from “la Cueva de las Espadas” (Cave of Swords), Naica, Mexico</atitle><jtitle>Mineralogy and petrology</jtitle><stitle>Miner Petrol</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>112</volume><issue>6</issue><spage>865</spage><epage>879</epage><pages>865-879</pages><issn>0930-0708</issn><eissn>1438-1168</eissn><abstract>The Cave of Swords was discovered in 1910 at Naica, Chihuahua, México. During the last century, human presence has changed the microclimate conditions inside this cave, raising the question of whether anthropogenic action resulted in the deterioration of its gypsum single crystals and in the deposition of impurities on their surfaces. The present work provides a detailed characterization of representative samples of this cave and suggests an answer to the origin of the impurities on the surface of these nature-made large crystals. Laboratory and synchrotron characterization techniques are applied. For the first time, the samples single-crystal nature and the fragmentation effect of impurities are characterized. Synchrotron light diffraction measurements performed on a collection of characteristic samples consistently reveal sharp textures, with crystal reciprocal vectors [0,1,0] preferably perpendicular to the samples principal cleavage planes and orientation widths averaging 8°. X-ray diffraction identifies galena, sphalerite, hematite, goethite and cuprite on the crystals’ surface. Diffraction results indicate no correlation between the number of phases of impurities present and crystallinity. Micro X-ray fluorescence clarifies the elemental spatial distribution. The correlations between the elemental distributions confirm the phase identification obtained by diffraction. For Mn and Pb, the correlations point to the presence of amorphous oxides. Minor phases’ characterization suggests they have been deposited on iron oxy-hydroxide substrates. All the identified phases correspond to minerals that were abundantly present in Naica ore deposit before any anthropogenic activity. The impurities on the surface of gypsum crystals at the Cave of Swords were not produced by human presence.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00710-018-0586-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1906-0105</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-0708 |
ispartof | Mineralogy and petrology, 2018-12, Vol.112 (6), p.865-879 |
issn | 0930-0708 1438-1168 |
language | eng |
recordid | cdi_proquest_journals_2056624342 |
source | Springer Link |
subjects | Anthropogenic factors Correlation Crystals Earth and Environmental Science Earth Sciences Fluorescence Galena Geochemistry Goethite Gypsum Haematite Hematite Hydroxides Impurities Inorganic Chemistry Light diffraction Manganese Microclimate Mineral deposits Mineralogy Minerals Orientation Original Paper Oxides Phases Single crystals Spatial distribution Sphalerite Substrates Vectors Weapons X-ray diffraction X-ray fluorescence Zincblende |
title | Surface impurities on giant gypsum crystals from “la Cueva de las Espadas” (Cave of Swords), Naica, Mexico |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20impurities%20on%20giant%20gypsum%20crystals%20from%20%E2%80%9Cla%20Cueva%20de%20las%20Espadas%E2%80%9D%20(Cave%20of%20Swords),%20Naica,%20Mexico&rft.jtitle=Mineralogy%20and%20petrology&rft.au=Castillo-Sandoval,%20Isa%C3%AD&rft.date=2018-12-01&rft.volume=112&rft.issue=6&rft.spage=865&rft.epage=879&rft.pages=865-879&rft.issn=0930-0708&rft.eissn=1438-1168&rft_id=info:doi/10.1007/s00710-018-0586-7&rft_dat=%3Cproquest_cross%3E2056624342%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-1b3518102e841ebf622e612d85aa2f8abe111637e5884db336afa1d6601c32933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056624342&rft_id=info:pmid/&rfr_iscdi=true |