Loading…

Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions

In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving p ( · ) -Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dynamics and differential equations 2018-06, Vol.30 (2), p.405-432
Main Authors: Hurtado, E. Juárez, Miyagaki, O. H., Rodrigues, R. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203
cites cdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203
container_end_page 432
container_issue 2
container_start_page 405
container_title Journal of dynamics and differential equations
container_volume 30
creator Hurtado, E. Juárez
Miyagaki, O. H.
Rodrigues, R. S.
description In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving p ( · ) -Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely - div ( a ( | ∇ u | p ( x ) ) | ∇ u | p ( x ) - 2 ∇ u ) = λ f ( x , u ) in Ω , u = 0 on ∂ Ω . By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter λ > 0 small enough, and also that the solution blows up, in the Sobolev norm, as λ → 0 + . Finally, by imposing additional hypotheses on the nonlinearity f ( x , · ) , we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.
doi_str_mv 10.1007/s10884-016-9542-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2056791414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056791414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuA62p-2rRZDmX8gRFBR1yGTJpohk7TaVK0rnwH39AnMWMFV67uhfudcw8HgFOMzjFC-YXHqCjSBGGW8CwlCdsDE5zlJOGEkP24oxQlOeHpITjyfo0Q4gXlEzDM36wPulEayqaCt30dbFtbZcMAnYEPru6DdY2HxnVQwrKW3u8O87q2bbAKzre9HIknG15cH-Bss-qc1yHYr4_Pe7myjXu14R0uh1bD0jWV_eGPwYGRtdcnv3MKHi_ny_I6Wdxd3ZSzRaIoZiHhNGMVM5IRzlaGqhi7wtwoo1AuC8k4rlROqZGFooXhGiGcF8TkJNMmywiiU3A2-rad2_baB7F2fdfEl4KgjOUcpziNFB4pFbP7ThvRdnYju0FgJHYNi7FhERsWu4YFixoyanxkm2fd_Tn_L_oGRc2BIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056791414</pqid></control><display><type>article</type><title>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</title><source>Springer Link</source><creator>Hurtado, E. Juárez ; Miyagaki, O. H. ; Rodrigues, R. S.</creator><creatorcontrib>Hurtado, E. Juárez ; Miyagaki, O. H. ; Rodrigues, R. S.</creatorcontrib><description>In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving p ( · ) -Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely - div ( a ( | ∇ u | p ( x ) ) | ∇ u | p ( x ) - 2 ∇ u ) = λ f ( x , u ) in Ω , u = 0 on ∂ Ω . By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter λ &gt; 0 small enough, and also that the solution blows up, in the Sobolev norm, as λ → 0 + . Finally, by imposing additional hypotheses on the nonlinearity f ( x , · ) , we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-016-9542-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Dirichlet problem ; Elliptic functions ; Existence theorems ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Variational methods</subject><ispartof>Journal of dynamics and differential equations, 2018-06, Vol.30 (2), p.405-432</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</citedby><cites>FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hurtado, E. Juárez</creatorcontrib><creatorcontrib>Miyagaki, O. H.</creatorcontrib><creatorcontrib>Rodrigues, R. S.</creatorcontrib><title>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving p ( · ) -Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely - div ( a ( | ∇ u | p ( x ) ) | ∇ u | p ( x ) - 2 ∇ u ) = λ f ( x , u ) in Ω , u = 0 on ∂ Ω . By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter λ &gt; 0 small enough, and also that the solution blows up, in the Sobolev norm, as λ → 0 + . Finally, by imposing additional hypotheses on the nonlinearity f ( x , · ) , we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.</description><subject>Applications of Mathematics</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Existence theorems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Variational methods</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI4-gLuA62p-2rRZDmX8gRFBR1yGTJpohk7TaVK0rnwH39AnMWMFV67uhfudcw8HgFOMzjFC-YXHqCjSBGGW8CwlCdsDE5zlJOGEkP24oxQlOeHpITjyfo0Q4gXlEzDM36wPulEayqaCt30dbFtbZcMAnYEPru6DdY2HxnVQwrKW3u8O87q2bbAKzre9HIknG15cH-Bss-qc1yHYr4_Pe7myjXu14R0uh1bD0jWV_eGPwYGRtdcnv3MKHi_ny_I6Wdxd3ZSzRaIoZiHhNGMVM5IRzlaGqhi7wtwoo1AuC8k4rlROqZGFooXhGiGcF8TkJNMmywiiU3A2-rad2_baB7F2fdfEl4KgjOUcpziNFB4pFbP7ThvRdnYju0FgJHYNi7FhERsWu4YFixoyanxkm2fd_Tn_L_oGRc2BIA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hurtado, E. Juárez</creator><creator>Miyagaki, O. H.</creator><creator>Rodrigues, R. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</title><author>Hurtado, E. Juárez ; Miyagaki, O. H. ; Rodrigues, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Existence theorems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurtado, E. Juárez</creatorcontrib><creatorcontrib>Miyagaki, O. H.</creatorcontrib><creatorcontrib>Rodrigues, R. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurtado, E. Juárez</au><au>Miyagaki, O. H.</au><au>Rodrigues, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>30</volume><issue>2</issue><spage>405</spage><epage>432</epage><pages>405-432</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving p ( · ) -Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely - div ( a ( | ∇ u | p ( x ) ) | ∇ u | p ( x ) - 2 ∇ u ) = λ f ( x , u ) in Ω , u = 0 on ∂ Ω . By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter λ &gt; 0 small enough, and also that the solution blows up, in the Sobolev norm, as λ → 0 + . Finally, by imposing additional hypotheses on the nonlinearity f ( x , · ) , we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-016-9542-6</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-7294
ispartof Journal of dynamics and differential equations, 2018-06, Vol.30 (2), p.405-432
issn 1040-7294
1572-9222
language eng
recordid cdi_proquest_journals_2056791414
source Springer Link
subjects Applications of Mathematics
Dirichlet problem
Elliptic functions
Existence theorems
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Variational methods
title Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Multiplicity%20of%20Solutions%20for%20a%20Class%20of%20Elliptic%20Equations%20Without%20Ambrosetti%E2%80%93Rabinowitz%20Type%20Conditions&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Hurtado,%20E.%20Ju%C3%A1rez&rft.date=2018-06-01&rft.volume=30&rft.issue=2&rft.spage=405&rft.epage=432&rft.pages=405-432&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-016-9542-6&rft_dat=%3Cproquest_cross%3E2056791414%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056791414&rft_id=info:pmid/&rfr_iscdi=true