Loading…
Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions
In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving p ( · ) -Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type...
Saved in:
Published in: | Journal of dynamics and differential equations 2018-06, Vol.30 (2), p.405-432 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203 |
container_end_page | 432 |
container_issue | 2 |
container_start_page | 405 |
container_title | Journal of dynamics and differential equations |
container_volume | 30 |
creator | Hurtado, E. Juárez Miyagaki, O. H. Rodrigues, R. S. |
description | In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving
p
(
·
)
-Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely
-
div
(
a
(
|
∇
u
|
p
(
x
)
)
|
∇
u
|
p
(
x
)
-
2
∇
u
)
=
λ
f
(
x
,
u
)
in
Ω
,
u
=
0
on
∂
Ω
.
By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter
λ
>
0
small enough, and also that the solution blows up, in the Sobolev norm, as
λ
→
0
+
.
Finally, by imposing additional hypotheses on the nonlinearity
f
(
x
,
·
)
,
we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii. |
doi_str_mv | 10.1007/s10884-016-9542-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2056791414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2056791414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</originalsourceid><addsrcrecordid>eNp1kM1KxDAUhYMoOI4-gLuA62p-2rRZDmX8gRFBR1yGTJpohk7TaVK0rnwH39AnMWMFV67uhfudcw8HgFOMzjFC-YXHqCjSBGGW8CwlCdsDE5zlJOGEkP24oxQlOeHpITjyfo0Q4gXlEzDM36wPulEayqaCt30dbFtbZcMAnYEPru6DdY2HxnVQwrKW3u8O87q2bbAKzre9HIknG15cH-Bss-qc1yHYr4_Pe7myjXu14R0uh1bD0jWV_eGPwYGRtdcnv3MKHi_ny_I6Wdxd3ZSzRaIoZiHhNGMVM5IRzlaGqhi7wtwoo1AuC8k4rlROqZGFooXhGiGcF8TkJNMmywiiU3A2-rad2_baB7F2fdfEl4KgjOUcpziNFB4pFbP7ThvRdnYju0FgJHYNi7FhERsWu4YFixoyanxkm2fd_Tn_L_oGRc2BIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056791414</pqid></control><display><type>article</type><title>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</title><source>Springer Link</source><creator>Hurtado, E. Juárez ; Miyagaki, O. H. ; Rodrigues, R. S.</creator><creatorcontrib>Hurtado, E. Juárez ; Miyagaki, O. H. ; Rodrigues, R. S.</creatorcontrib><description>In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving
p
(
·
)
-Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely
-
div
(
a
(
|
∇
u
|
p
(
x
)
)
|
∇
u
|
p
(
x
)
-
2
∇
u
)
=
λ
f
(
x
,
u
)
in
Ω
,
u
=
0
on
∂
Ω
.
By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter
λ
>
0
small enough, and also that the solution blows up, in the Sobolev norm, as
λ
→
0
+
.
Finally, by imposing additional hypotheses on the nonlinearity
f
(
x
,
·
)
,
we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-016-9542-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Dirichlet problem ; Elliptic functions ; Existence theorems ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Variational methods</subject><ispartof>Journal of dynamics and differential equations, 2018-06, Vol.30 (2), p.405-432</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</citedby><cites>FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hurtado, E. Juárez</creatorcontrib><creatorcontrib>Miyagaki, O. H.</creatorcontrib><creatorcontrib>Rodrigues, R. S.</creatorcontrib><title>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving
p
(
·
)
-Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely
-
div
(
a
(
|
∇
u
|
p
(
x
)
)
|
∇
u
|
p
(
x
)
-
2
∇
u
)
=
λ
f
(
x
,
u
)
in
Ω
,
u
=
0
on
∂
Ω
.
By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter
λ
>
0
small enough, and also that the solution blows up, in the Sobolev norm, as
λ
→
0
+
.
Finally, by imposing additional hypotheses on the nonlinearity
f
(
x
,
·
)
,
we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.</description><subject>Applications of Mathematics</subject><subject>Dirichlet problem</subject><subject>Elliptic functions</subject><subject>Existence theorems</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Variational methods</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAUhYMoOI4-gLuA62p-2rRZDmX8gRFBR1yGTJpohk7TaVK0rnwH39AnMWMFV67uhfudcw8HgFOMzjFC-YXHqCjSBGGW8CwlCdsDE5zlJOGEkP24oxQlOeHpITjyfo0Q4gXlEzDM36wPulEayqaCt30dbFtbZcMAnYEPru6DdY2HxnVQwrKW3u8O87q2bbAKzre9HIknG15cH-Bss-qc1yHYr4_Pe7myjXu14R0uh1bD0jWV_eGPwYGRtdcnv3MKHi_ny_I6Wdxd3ZSzRaIoZiHhNGMVM5IRzlaGqhi7wtwoo1AuC8k4rlROqZGFooXhGiGcF8TkJNMmywiiU3A2-rad2_baB7F2fdfEl4KgjOUcpziNFB4pFbP7ThvRdnYju0FgJHYNi7FhERsWu4YFixoyanxkm2fd_Tn_L_oGRc2BIA</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hurtado, E. Juárez</creator><creator>Miyagaki, O. H.</creator><creator>Rodrigues, R. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</title><author>Hurtado, E. Juárez ; Miyagaki, O. H. ; Rodrigues, R. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Dirichlet problem</topic><topic>Elliptic functions</topic><topic>Existence theorems</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hurtado, E. Juárez</creatorcontrib><creatorcontrib>Miyagaki, O. H.</creatorcontrib><creatorcontrib>Rodrigues, R. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hurtado, E. Juárez</au><au>Miyagaki, O. H.</au><au>Rodrigues, R. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>30</volume><issue>2</issue><spage>405</spage><epage>432</epage><pages>405-432</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving
p
(
·
)
-Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely
-
div
(
a
(
|
∇
u
|
p
(
x
)
)
|
∇
u
|
p
(
x
)
-
2
∇
u
)
=
λ
f
(
x
,
u
)
in
Ω
,
u
=
0
on
∂
Ω
.
By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter
λ
>
0
small enough, and also that the solution blows up, in the Sobolev norm, as
λ
→
0
+
.
Finally, by imposing additional hypotheses on the nonlinearity
f
(
x
,
·
)
,
we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-016-9542-6</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7294 |
ispartof | Journal of dynamics and differential equations, 2018-06, Vol.30 (2), p.405-432 |
issn | 1040-7294 1572-9222 |
language | eng |
recordid | cdi_proquest_journals_2056791414 |
source | Springer Link |
subjects | Applications of Mathematics Dirichlet problem Elliptic functions Existence theorems Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Variational methods |
title | Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20and%20Multiplicity%20of%20Solutions%20for%20a%20Class%20of%20Elliptic%20Equations%20Without%20Ambrosetti%E2%80%93Rabinowitz%20Type%20Conditions&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Hurtado,%20E.%20Ju%C3%A1rez&rft.date=2018-06-01&rft.volume=30&rft.issue=2&rft.spage=405&rft.epage=432&rft.pages=405-432&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-016-9542-6&rft_dat=%3Cproquest_cross%3E2056791414%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9356d6fa6296bf3c983d19fcfc07a8a691dc733fa8c38f9e001782f725ef55203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2056791414&rft_id=info:pmid/&rfr_iscdi=true |