Loading…
The role of oxidative stress in carcinogenesis
Chemical carcinogenesis follows a multistep process involving both mutation and increased cell proliferation. Oxidative stress can occur through overproduction of reactive oxygen and nitrogen species through either endogenous or exogenous insults. Important to carcinogenesis, the unregulated or prol...
Saved in:
Published in: | Annual review of pharmacology and toxicology 2004-01, Vol.44 (1), p.239-267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chemical carcinogenesis follows a multistep process involving both mutation and increased cell proliferation. Oxidative stress can occur through overproduction of reactive oxygen and nitrogen species through either endogenous or exogenous insults. Important to carcinogenesis, the unregulated or prolonged production of cellular oxidants has been linked to mutation (induced by oxidant-induced DNA damage), as well as modification of gene expression. In particular, signal transduction pathways, including AP-1 and NFkappaB, are known to be activated by reactive oxygen species, and they lead to the transcription of genes involved in cell growth regulatory pathways. This review examines the evidence of cellular oxidants' involvement in the carcinogenesis process, and focuses on the mechanisms for production, cellular damage produced, and the role of signaling cascades by reactive oxygen species. |
---|---|
ISSN: | 0362-1642 1545-4304 |
DOI: | 10.1146/annurev.pharmtox.44.101802.121851 |