Loading…
Deconvolution of azimuthal mode detection measurements
Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over all detectable modes, similarly to the Point Spread Function of Conventional Beamforming wi...
Saved in:
Published in: | Journal of sound and vibration 2018-05, Vol.422, p.1-14 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-c87bdf5cdeaee25ec284f7d1fc708272a32262215175460513cb8f77f544969f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-c87bdf5cdeaee25ec284f7d1fc708272a32262215175460513cb8f77f544969f3 |
container_end_page | 14 |
container_issue | |
container_start_page | 1 |
container_title | Journal of sound and vibration |
container_volume | 422 |
creator | Sijtsma, Pieter Brouwer, Harry |
description | Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over all detectable modes, similarly to the Point Spread Function of Conventional Beamforming with microphone arrays. With multiple modes the response patterns interfere, leading to a relatively high “noise floor” of spurious modes in the detected mode spectrum, in other words, to a low dynamic range. In this paper a deconvolution strategy is proposed for increasing this dynamic range. It starts with separating the measured sound into shaft tones and broadband noise. For broadband noise modes, a standard Non-Negative Least Squares solver appeared to be a perfect deconvolution tool. For shaft tones a Matching Pursuit approach is proposed, taking advantage of the sparsity of dominant modes. The deconvolution methods were applied to mode detection measurements in a fan rig. An increase in dynamic range of typically 10–15 dB was found. |
doi_str_mv | 10.1016/j.jsv.2018.02.029 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2061035557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X18301196</els_id><sourcerecordid>2061035557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c87bdf5cdeaee25ec284f7d1fc708272a32262215175460513cb8f77f544969f3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvBU8t76kzUfxJOsnLHhR8Ba6yQu2bJs1aQv66826noWBd3gz780MIZcUCgpUXHdFF-eCAVUFsIT6iCwo1DxXXKhjsgBgLK8EvJ-Ssxg7AKirsloQcYfGD7PfTmPrh8y7rPlu-2n8aLZZ7y1mFkc0v7semzgF7HEY4zk5cc024sXfXJK3h_vX1VO-fnl8Xt2uc1MKNeZGyY113FhsEBlHw1TlpKXOSFBMsqZkTDBGOZU8meO0NBvlpHS8qmpRu3JJrg53d8F_ThhH3fkpDOmlZiAolJxzmVj0wDLBxxjQ6V1o-yZ8aQp6X4_udKpH7-vRwBLqpLk5aDDZn1sMOpoWB4O2DSmwtr79R_0DtmltCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061035557</pqid></control><display><type>article</type><title>Deconvolution of azimuthal mode detection measurements</title><source>Elsevier</source><creator>Sijtsma, Pieter ; Brouwer, Harry</creator><creatorcontrib>Sijtsma, Pieter ; Brouwer, Harry</creatorcontrib><description>Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over all detectable modes, similarly to the Point Spread Function of Conventional Beamforming with microphone arrays. With multiple modes the response patterns interfere, leading to a relatively high “noise floor” of spurious modes in the detected mode spectrum, in other words, to a low dynamic range. In this paper a deconvolution strategy is proposed for increasing this dynamic range. It starts with separating the measured sound into shaft tones and broadband noise. For broadband noise modes, a standard Non-Negative Least Squares solver appeared to be a perfect deconvolution tool. For shaft tones a Matching Pursuit approach is proposed, taking advantage of the sparsity of dominant modes. The deconvolution methods were applied to mode detection measurements in a fan rig. An increase in dynamic range of typically 10–15 dB was found.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2018.02.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Acoustic beamforming ; Acoustics ; Algorithms ; Azimuthal mode detection ; Beamforming ; Broadband ; Deconvolution ; Dynamic range ; Noise ; Non-equally spaced array ; Point spread functions</subject><ispartof>Journal of sound and vibration, 2018-05, Vol.422, p.1-14</ispartof><rights>2018 The Authors</rights><rights>Copyright Elsevier Science Ltd. May 26, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c87bdf5cdeaee25ec284f7d1fc708272a32262215175460513cb8f77f544969f3</citedby><cites>FETCH-LOGICAL-c368t-c87bdf5cdeaee25ec284f7d1fc708272a32262215175460513cb8f77f544969f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sijtsma, Pieter</creatorcontrib><creatorcontrib>Brouwer, Harry</creatorcontrib><title>Deconvolution of azimuthal mode detection measurements</title><title>Journal of sound and vibration</title><description>Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over all detectable modes, similarly to the Point Spread Function of Conventional Beamforming with microphone arrays. With multiple modes the response patterns interfere, leading to a relatively high “noise floor” of spurious modes in the detected mode spectrum, in other words, to a low dynamic range. In this paper a deconvolution strategy is proposed for increasing this dynamic range. It starts with separating the measured sound into shaft tones and broadband noise. For broadband noise modes, a standard Non-Negative Least Squares solver appeared to be a perfect deconvolution tool. For shaft tones a Matching Pursuit approach is proposed, taking advantage of the sparsity of dominant modes. The deconvolution methods were applied to mode detection measurements in a fan rig. An increase in dynamic range of typically 10–15 dB was found.</description><subject>Acoustic beamforming</subject><subject>Acoustics</subject><subject>Algorithms</subject><subject>Azimuthal mode detection</subject><subject>Beamforming</subject><subject>Broadband</subject><subject>Deconvolution</subject><subject>Dynamic range</subject><subject>Noise</subject><subject>Non-equally spaced array</subject><subject>Point spread functions</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvBU8t76kzUfxJOsnLHhR8Ba6yQu2bJs1aQv66826noWBd3gz780MIZcUCgpUXHdFF-eCAVUFsIT6iCwo1DxXXKhjsgBgLK8EvJ-Ssxg7AKirsloQcYfGD7PfTmPrh8y7rPlu-2n8aLZZ7y1mFkc0v7semzgF7HEY4zk5cc024sXfXJK3h_vX1VO-fnl8Xt2uc1MKNeZGyY113FhsEBlHw1TlpKXOSFBMsqZkTDBGOZU8meO0NBvlpHS8qmpRu3JJrg53d8F_ThhH3fkpDOmlZiAolJxzmVj0wDLBxxjQ6V1o-yZ8aQp6X4_udKpH7-vRwBLqpLk5aDDZn1sMOpoWB4O2DSmwtr79R_0DtmltCQ</recordid><startdate>20180526</startdate><enddate>20180526</enddate><creator>Sijtsma, Pieter</creator><creator>Brouwer, Harry</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20180526</creationdate><title>Deconvolution of azimuthal mode detection measurements</title><author>Sijtsma, Pieter ; Brouwer, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c87bdf5cdeaee25ec284f7d1fc708272a32262215175460513cb8f77f544969f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic beamforming</topic><topic>Acoustics</topic><topic>Algorithms</topic><topic>Azimuthal mode detection</topic><topic>Beamforming</topic><topic>Broadband</topic><topic>Deconvolution</topic><topic>Dynamic range</topic><topic>Noise</topic><topic>Non-equally spaced array</topic><topic>Point spread functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sijtsma, Pieter</creatorcontrib><creatorcontrib>Brouwer, Harry</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sijtsma, Pieter</au><au>Brouwer, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deconvolution of azimuthal mode detection measurements</atitle><jtitle>Journal of sound and vibration</jtitle><date>2018-05-26</date><risdate>2018</risdate><volume>422</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>Unequally spaced transducer rings make it possible to extend the range of detectable azimuthal modes. The disadvantage is that the response of the mode detection algorithm to a single mode is distributed over all detectable modes, similarly to the Point Spread Function of Conventional Beamforming with microphone arrays. With multiple modes the response patterns interfere, leading to a relatively high “noise floor” of spurious modes in the detected mode spectrum, in other words, to a low dynamic range. In this paper a deconvolution strategy is proposed for increasing this dynamic range. It starts with separating the measured sound into shaft tones and broadband noise. For broadband noise modes, a standard Non-Negative Least Squares solver appeared to be a perfect deconvolution tool. For shaft tones a Matching Pursuit approach is proposed, taking advantage of the sparsity of dominant modes. The deconvolution methods were applied to mode detection measurements in a fan rig. An increase in dynamic range of typically 10–15 dB was found.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2018.02.029</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2018-05, Vol.422, p.1-14 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_journals_2061035557 |
source | Elsevier |
subjects | Acoustic beamforming Acoustics Algorithms Azimuthal mode detection Beamforming Broadband Deconvolution Dynamic range Noise Non-equally spaced array Point spread functions |
title | Deconvolution of azimuthal mode detection measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deconvolution%20of%20azimuthal%20mode%20detection%20measurements&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Sijtsma,%20Pieter&rft.date=2018-05-26&rft.volume=422&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2018.02.029&rft_dat=%3Cproquest_cross%3E2061035557%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-c87bdf5cdeaee25ec284f7d1fc708272a32262215175460513cb8f77f544969f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2061035557&rft_id=info:pmid/&rfr_iscdi=true |