Loading…
Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries
A generalized finite-volume framework for the solution of fluid flows at all speeds in complex geometries and on unstructured meshes is presented. Starting from an existing pressure-based and fully-coupled formulation for the solution of incompressible flow equations, the additional implementation o...
Saved in:
Published in: | Journal of computational physics 2017-10, Vol.346, p.91-130 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A generalized finite-volume framework for the solution of fluid flows at all speeds in complex geometries and on unstructured meshes is presented. Starting from an existing pressure-based and fully-coupled formulation for the solution of incompressible flow equations, the additional implementation of pressure–density–energy coupling as well as shock-capturing leads to a novel solver framework which is capable of handling flows at all speeds, including quasi-incompressible, subsonic, transonic and supersonic flows. The proposed numerical framework features an implicit coupling of pressure and velocity, which improves the numerical stability in the presence of complex sources and/or equations of state, as well as an energy equation discretized in conservative form that ensures an accurate prediction of temperature and Mach number across strong shocks. The framework is verified and validated by a large number of test cases, demonstrating the accurate and robust prediction of steady-state and transient flows in the quasi-incompressible as well as subsonic, transonic and supersonic speed regimes on structured and unstructured meshes as well as in complex domains. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/j.jcp.2017.06.009 |