Loading…

Distance sets, orthogonal projections and passing to weak tangents

We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set h...

Full description

Saved in:
Bibliographic Details
Published in:Israel journal of mathematics 2018-06, Vol.226 (2), p.851-875
Main Author: Fraser, Jonathan M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3
cites cdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3
container_end_page 875
container_issue 2
container_start_page 851
container_title Israel journal of mathematics
container_volume 226
creator Fraser, Jonathan M.
description We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.
doi_str_mv 10.1007/s11856-018-1715-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2062200960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062200960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewsscUw48ROsoTylCqxgbXlOE5JKXHxGCH69bgqEitWs7nn6s5h7BThAgGqS0KslRaAtcAKldjssQkqrUStEPfZBECikFjJQ3ZEtARQRYXFhF3fDJTs6Dwnn-ich5hewyKMdsXXMSy9S0MYidux42tLNIwLngL_8vaNZ2zhx0TH7KC3K_Inv3fKXu5un2cPYv50_zi7mgtXoE6ir7S3VjVSa-eazmIHRVfWbeld4-rao2pVKduykT3qvpNdUbRQSt3qHspMFlN2tuvNwz4-PSWzDJ8xLyUjQUsJ0GjIKdylXAxE0fdmHYd3G78NgtmqMjtVJqsyW1Vmkxm5Yyhn81Pxr_l_6Ae8t2yr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062200960</pqid></control><display><type>article</type><title>Distance sets, orthogonal projections and passing to weak tangents</title><source>Springer Nature</source><creator>Fraser, Jonathan M.</creator><creatorcontrib>Fraser, Jonathan M.</creatorcontrib><description>We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-018-1715-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Tangents ; Theoretical</subject><ispartof>Israel journal of mathematics, 2018-06, Vol.226 (2), p.851-875</ispartof><rights>Hebrew University of Jerusalem 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</citedby><cites>FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fraser, Jonathan M.</creatorcontrib><title>Distance sets, orthogonal projections and passing to weak tangents</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tangents</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewsscUw48ROsoTylCqxgbXlOE5JKXHxGCH69bgqEitWs7nn6s5h7BThAgGqS0KslRaAtcAKldjssQkqrUStEPfZBECikFjJQ3ZEtARQRYXFhF3fDJTs6Dwnn-ich5hewyKMdsXXMSy9S0MYidux42tLNIwLngL_8vaNZ2zhx0TH7KC3K_Inv3fKXu5un2cPYv50_zi7mgtXoE6ir7S3VjVSa-eazmIHRVfWbeld4-rao2pVKduykT3qvpNdUbRQSt3qHspMFlN2tuvNwz4-PSWzDJ8xLyUjQUsJ0GjIKdylXAxE0fdmHYd3G78NgtmqMjtVJqsyW1Vmkxm5Yyhn81Pxr_l_6Ae8t2yr</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Fraser, Jonathan M.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Distance sets, orthogonal projections and passing to weak tangents</title><author>Fraser, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tangents</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraser, Jonathan M.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraser, Jonathan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance sets, orthogonal projections and passing to weak tangents</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>226</volume><issue>2</issue><spage>851</spage><epage>875</epage><pages>851-875</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-018-1715-z</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2018-06, Vol.226 (2), p.851-875
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2062200960
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Group Theory and Generalizations
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Tangents
Theoretical
title Distance sets, orthogonal projections and passing to weak tangents
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20sets,%20orthogonal%20projections%20and%20passing%20to%20weak%20tangents&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Fraser,%20Jonathan%20M.&rft.date=2018-06-01&rft.volume=226&rft.issue=2&rft.spage=851&rft.epage=875&rft.pages=851-875&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-018-1715-z&rft_dat=%3Cproquest_cross%3E2062200960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2062200960&rft_id=info:pmid/&rfr_iscdi=true