Loading…
Distance sets, orthogonal projections and passing to weak tangents
We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set h...
Saved in:
Published in: | Israel journal of mathematics 2018-06, Vol.226 (2), p.851-875 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3 |
container_end_page | 875 |
container_issue | 2 |
container_start_page | 851 |
container_title | Israel journal of mathematics |
container_volume | 226 |
creator | Fraser, Jonathan M. |
description | We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout. |
doi_str_mv | 10.1007/s11856-018-1715-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2062200960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2062200960</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewsscUw48ROsoTylCqxgbXlOE5JKXHxGCH69bgqEitWs7nn6s5h7BThAgGqS0KslRaAtcAKldjssQkqrUStEPfZBECikFjJQ3ZEtARQRYXFhF3fDJTs6Dwnn-ich5hewyKMdsXXMSy9S0MYidux42tLNIwLngL_8vaNZ2zhx0TH7KC3K_Inv3fKXu5un2cPYv50_zi7mgtXoE6ir7S3VjVSa-eazmIHRVfWbeld4-rao2pVKduykT3qvpNdUbRQSt3qHspMFlN2tuvNwz4-PSWzDJ8xLyUjQUsJ0GjIKdylXAxE0fdmHYd3G78NgtmqMjtVJqsyW1Vmkxm5Yyhn81Pxr_l_6Ae8t2yr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062200960</pqid></control><display><type>article</type><title>Distance sets, orthogonal projections and passing to weak tangents</title><source>Springer Nature</source><creator>Fraser, Jonathan M.</creator><creatorcontrib>Fraser, Jonathan M.</creatorcontrib><description>We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-018-1715-z</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Tangents ; Theoretical</subject><ispartof>Israel journal of mathematics, 2018-06, Vol.226 (2), p.851-875</ispartof><rights>Hebrew University of Jerusalem 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</citedby><cites>FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fraser, Jonathan M.</creatorcontrib><title>Distance sets, orthogonal projections and passing to weak tangents</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tangents</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewsscUw48ROsoTylCqxgbXlOE5JKXHxGCH69bgqEitWs7nn6s5h7BThAgGqS0KslRaAtcAKldjssQkqrUStEPfZBECikFjJQ3ZEtARQRYXFhF3fDJTs6Dwnn-ich5hewyKMdsXXMSy9S0MYidux42tLNIwLngL_8vaNZ2zhx0TH7KC3K_Inv3fKXu5un2cPYv50_zi7mgtXoE6ir7S3VjVSa-eazmIHRVfWbeld4-rao2pVKduykT3qvpNdUbRQSt3qHspMFlN2tuvNwz4-PSWzDJ8xLyUjQUsJ0GjIKdylXAxE0fdmHYd3G78NgtmqMjtVJqsyW1Vmkxm5Yyhn81Pxr_l_6Ae8t2yr</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Fraser, Jonathan M.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180601</creationdate><title>Distance sets, orthogonal projections and passing to weak tangents</title><author>Fraser, Jonathan M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tangents</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraser, Jonathan M.</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraser, Jonathan M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distance sets, orthogonal projections and passing to weak tangents</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>226</volume><issue>2</issue><spage>851</spage><epage>875</epage><pages>851-875</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-018-1715-z</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2018-06, Vol.226 (2), p.851-875 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2062200960 |
source | Springer Nature |
subjects | Algebra Analysis Applications of Mathematics Group Theory and Generalizations Mathematical and Computational Physics Mathematics Mathematics and Statistics Tangents Theoretical |
title | Distance sets, orthogonal projections and passing to weak tangents |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distance%20sets,%20orthogonal%20projections%20and%20passing%20to%20weak%20tangents&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Fraser,%20Jonathan%20M.&rft.date=2018-06-01&rft.volume=226&rft.issue=2&rft.spage=851&rft.epage=875&rft.pages=851-875&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-018-1715-z&rft_dat=%3Cproquest_cross%3E2062200960%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f76eaa59266cc9da1d03d48b4ec9c88e15b542b492f16fd2d33b0426b6f04eaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2062200960&rft_id=info:pmid/&rfr_iscdi=true |