Loading…

Low-Rank Matrix Completion to Reconstruct Incomplete Rendering Images

Path tracing provides photo-realistic rendering in many applications but intermediate previsualization often suffers from distracting noise. Since the fundamental underlying problem is insufficient samples, we exploit the coherence of the visual signal to reconstruct missing samples, using a low-ran...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics 2018-08, Vol.24 (8), p.2353-2365
Main Authors: Liu, Ping, Lewis, John, Rhee, Taehyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-820ccf19f3e8f01772b4c42da13f7d8ba529be1a27109f569c6ec7f6f986a37d3
cites cdi_FETCH-LOGICAL-c349t-820ccf19f3e8f01772b4c42da13f7d8ba529be1a27109f569c6ec7f6f986a37d3
container_end_page 2365
container_issue 8
container_start_page 2353
container_title IEEE transactions on visualization and computer graphics
container_volume 24
creator Liu, Ping
Lewis, John
Rhee, Taehyun
description Path tracing provides photo-realistic rendering in many applications but intermediate previsualization often suffers from distracting noise. Since the fundamental underlying problem is insufficient samples, we exploit the coherence of the visual signal to reconstruct missing samples, using a low-rank matrix completion framework. We present novel methods to construct low rank matrices for incomplete images including missing pixel, missing sub-pixel, and multi-frame scenarios. A convolutional neural network provides fast pre-completion for initialising missing values, and subsequent weighted nuclear norm minimisation (WNNM) with a parameter adjustment strategy (PAWNNM) efficiently recovers missing values even in high frequency details. The result shows better visual quality than recent methods including compressed sensing based reconstruction.
doi_str_mv 10.1109/TVCG.2017.2722414
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2063043262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7967887</ieee_id><sourcerecordid>1917965901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-820ccf19f3e8f01772b4c42da13f7d8ba529be1a27109f569c6ec7f6f986a37d3</originalsourceid><addsrcrecordid>eNpdkMFKAzEQhoMotlYfQARZ8OJla5JNk81RlloLFaFUryHNTsrW7qYmu6hvb0prD54mzHwz_PkQuiZ4SAiWD4v3YjKkmIghFZQywk5Qn0hGUjzC_DS-sRAp5ZT30EUIa4wJY7k8Rz2ac0mlEH00nrmvdK6bj-RFt776TgpXbzfQVq5JWpfMwbgmtL4zbTJtzH4Gsd2U4KtmlUxrvYJwic6s3gS4OtQBensaL4rndPY6mRaPs9RkTLZpTrExlkibQW5jbEGXzDBaapJZUeZLPaJyCURTEX9nR1waDkZYbmXOdSbKbIDu93e33n12EFpVV8HAZqMbcF1QRBIh-UhiEtG7f-jadb6J6RTFPMMsi2IiRfaU8S4ED1ZtfVVr_6MIVjvHaudY7Ryrg-O4c3u43C1rKI8bf1IjcLMHKgA4jmMwkeci-wVVUH8O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063043262</pqid></control><display><type>article</type><title>Low-Rank Matrix Completion to Reconstruct Incomplete Rendering Images</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Ping ; Lewis, John ; Rhee, Taehyun</creator><creatorcontrib>Liu, Ping ; Lewis, John ; Rhee, Taehyun</creatorcontrib><description>Path tracing provides photo-realistic rendering in many applications but intermediate previsualization often suffers from distracting noise. Since the fundamental underlying problem is insufficient samples, we exploit the coherence of the visual signal to reconstruct missing samples, using a low-rank matrix completion framework. We present novel methods to construct low rank matrices for incomplete images including missing pixel, missing sub-pixel, and multi-frame scenarios. A convolutional neural network provides fast pre-completion for initialising missing values, and subsequent weighted nuclear norm minimisation (WNNM) with a parameter adjustment strategy (PAWNNM) efficiently recovers missing values even in high frequency details. The result shows better visual quality than recent methods including compressed sensing based reconstruction.</description><identifier>ISSN: 1077-2626</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2017.2722414</identifier><identifier>PMID: 28692977</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; convolutional neural network ; Image coding ; Image reconstruction ; matrix completion ; Minimization ; Monte Carlo methods ; Neural networks ; nuclear norm minimization ; path-tracing ; Pixels ; Previsualisation ; Rendering ; Rendering (computer graphics) ; sampling and reconstruction ; Visual signals ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2353-2365</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-820ccf19f3e8f01772b4c42da13f7d8ba529be1a27109f569c6ec7f6f986a37d3</citedby><cites>FETCH-LOGICAL-c349t-820ccf19f3e8f01772b4c42da13f7d8ba529be1a27109f569c6ec7f6f986a37d3</cites><orcidid>0000-0002-6150-0637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7967887$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28692977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Lewis, John</creatorcontrib><creatorcontrib>Rhee, Taehyun</creatorcontrib><title>Low-Rank Matrix Completion to Reconstruct Incomplete Rendering Images</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>Path tracing provides photo-realistic rendering in many applications but intermediate previsualization often suffers from distracting noise. Since the fundamental underlying problem is insufficient samples, we exploit the coherence of the visual signal to reconstruct missing samples, using a low-rank matrix completion framework. We present novel methods to construct low rank matrices for incomplete images including missing pixel, missing sub-pixel, and multi-frame scenarios. A convolutional neural network provides fast pre-completion for initialising missing values, and subsequent weighted nuclear norm minimisation (WNNM) with a parameter adjustment strategy (PAWNNM) efficiently recovers missing values even in high frequency details. The result shows better visual quality than recent methods including compressed sensing based reconstruction.</description><subject>Artificial neural networks</subject><subject>convolutional neural network</subject><subject>Image coding</subject><subject>Image reconstruction</subject><subject>matrix completion</subject><subject>Minimization</subject><subject>Monte Carlo methods</subject><subject>Neural networks</subject><subject>nuclear norm minimization</subject><subject>path-tracing</subject><subject>Pixels</subject><subject>Previsualisation</subject><subject>Rendering</subject><subject>Rendering (computer graphics)</subject><subject>sampling and reconstruction</subject><subject>Visual signals</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkMFKAzEQhoMotlYfQARZ8OJla5JNk81RlloLFaFUryHNTsrW7qYmu6hvb0prD54mzHwz_PkQuiZ4SAiWD4v3YjKkmIghFZQywk5Qn0hGUjzC_DS-sRAp5ZT30EUIa4wJY7k8Rz2ac0mlEH00nrmvdK6bj-RFt776TgpXbzfQVq5JWpfMwbgmtL4zbTJtzH4Gsd2U4KtmlUxrvYJwic6s3gS4OtQBensaL4rndPY6mRaPs9RkTLZpTrExlkibQW5jbEGXzDBaapJZUeZLPaJyCURTEX9nR1waDkZYbmXOdSbKbIDu93e33n12EFpVV8HAZqMbcF1QRBIh-UhiEtG7f-jadb6J6RTFPMMsi2IiRfaU8S4ED1ZtfVVr_6MIVjvHaudY7Ryrg-O4c3u43C1rKI8bf1IjcLMHKgA4jmMwkeci-wVVUH8O</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Liu, Ping</creator><creator>Lewis, John</creator><creator>Rhee, Taehyun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6150-0637</orcidid></search><sort><creationdate>20180801</creationdate><title>Low-Rank Matrix Completion to Reconstruct Incomplete Rendering Images</title><author>Liu, Ping ; Lewis, John ; Rhee, Taehyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-820ccf19f3e8f01772b4c42da13f7d8ba529be1a27109f569c6ec7f6f986a37d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>convolutional neural network</topic><topic>Image coding</topic><topic>Image reconstruction</topic><topic>matrix completion</topic><topic>Minimization</topic><topic>Monte Carlo methods</topic><topic>Neural networks</topic><topic>nuclear norm minimization</topic><topic>path-tracing</topic><topic>Pixels</topic><topic>Previsualisation</topic><topic>Rendering</topic><topic>Rendering (computer graphics)</topic><topic>sampling and reconstruction</topic><topic>Visual signals</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ping</creatorcontrib><creatorcontrib>Lewis, John</creatorcontrib><creatorcontrib>Rhee, Taehyun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ping</au><au>Lewis, John</au><au>Rhee, Taehyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-Rank Matrix Completion to Reconstruct Incomplete Rendering Images</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>24</volume><issue>8</issue><spage>2353</spage><epage>2365</epage><pages>2353-2365</pages><issn>1077-2626</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>Path tracing provides photo-realistic rendering in many applications but intermediate previsualization often suffers from distracting noise. Since the fundamental underlying problem is insufficient samples, we exploit the coherence of the visual signal to reconstruct missing samples, using a low-rank matrix completion framework. We present novel methods to construct low rank matrices for incomplete images including missing pixel, missing sub-pixel, and multi-frame scenarios. A convolutional neural network provides fast pre-completion for initialising missing values, and subsequent weighted nuclear norm minimisation (WNNM) with a parameter adjustment strategy (PAWNNM) efficiently recovers missing values even in high frequency details. The result shows better visual quality than recent methods including compressed sensing based reconstruction.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28692977</pmid><doi>10.1109/TVCG.2017.2722414</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6150-0637</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2018-08, Vol.24 (8), p.2353-2365
issn 1077-2626
1941-0506
language eng
recordid cdi_proquest_journals_2063043262
source IEEE Electronic Library (IEL) Journals
subjects Artificial neural networks
convolutional neural network
Image coding
Image reconstruction
matrix completion
Minimization
Monte Carlo methods
Neural networks
nuclear norm minimization
path-tracing
Pixels
Previsualisation
Rendering
Rendering (computer graphics)
sampling and reconstruction
Visual signals
Visualization
title Low-Rank Matrix Completion to Reconstruct Incomplete Rendering Images
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A58%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-Rank%20Matrix%20Completion%20to%20Reconstruct%20Incomplete%20Rendering%20Images&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Liu,%20Ping&rft.date=2018-08-01&rft.volume=24&rft.issue=8&rft.spage=2353&rft.epage=2365&rft.pages=2353-2365&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2017.2722414&rft_dat=%3Cproquest_pubme%3E1917965901%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-820ccf19f3e8f01772b4c42da13f7d8ba529be1a27109f569c6ec7f6f986a37d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063043262&rft_id=info:pmid/28692977&rft_ieee_id=7967887&rfr_iscdi=true