Loading…

An Overview of Fatigue Strength of Case-Hardening TRIP-Aided Martensitic Steels

Surface-hardened layer characteristics and fatigue strength properties of transformation-induced plasticity-aided martensitic steels subjected to heat-treatment or vacuum carburization followed by fine-particle peening are revealed for automotive applications specially for powertrain parts. The as-h...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2018-05, Vol.8 (5), p.355
Main Authors: Sugimoto, Koh-ichi, Hojo, Tomohiko, Srivastava, Ashok
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface-hardened layer characteristics and fatigue strength properties of transformation-induced plasticity-aided martensitic steels subjected to heat-treatment or vacuum carburization followed by fine-particle peening are revealed for automotive applications specially for powertrain parts. The as-heat-treated steels without the case-hardening process possess excellent impact toughness and fatigue strength. When the steels are subjected to fine-particle peening after heat-treatment, the fatigue limits of smooth and notched specimens increase considerably, accompanied with low notch sensitivity. Vacuum carburization and subsequent fine-particle peening increases further the fatigue strength of the steels, except notch fatigue limit. The increased fatigue limits are principally associated with high Vickers hardness and compressive residual stress just below the surface, resulting from the severe plastic deformation and the strain-induced martensitic transformation of metastable retained austenite, as well as low surface roughness and fatigue crack initiation depth.
ISSN:2075-4701
2075-4701
DOI:10.3390/met8050355