Loading…

A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries

The lack of high-performance cathode materials is a great challenge for the development of large-scale energy storage sodium ion batteries. Here, a new resource-rich P2-type Na0.44Mn0.6Ni0.4−xCuxO2 (0 ≤ x ≤ 0.3) sodium-ion battery (NIBs) cathode material was designed and synthesized by a sol–gel met...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (26), p.12582-12588
Main Authors: Chen, Tao, Liu, Weifang, Gao, Han, Yi Zhuo, Hu, Hang, Chen, Ao, Zhang, Jianwen, Yan, Jun, Liu, Kaiyu
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c261t-9c9b9cbb86a37a5758aa157ebcf75c5744f8d4c2c8c6a525b31ed481d6e0edc23
cites
container_end_page 12588
container_issue 26
container_start_page 12582
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Chen, Tao
Liu, Weifang
Gao, Han
Yi Zhuo
Hu, Hang
Chen, Ao
Zhang, Jianwen
Yan, Jun
Liu, Kaiyu
description The lack of high-performance cathode materials is a great challenge for the development of large-scale energy storage sodium ion batteries. Here, a new resource-rich P2-type Na0.44Mn0.6Ni0.4−xCuxO2 (0 ≤ x ≤ 0.3) sodium-ion battery (NIBs) cathode material was designed and synthesized by a sol–gel method. Na ions occupy the Naf sites and the Nae sites in a proportion of 1 : 1, which maintains the high symmetry and stability of the P2-type structure. The charging/discharging tests show that Na0.44Mn0.6Ni0.3Cu0.1O2 has a high initial capacity of 149 mA h g−1 and 80% capacity retention after 50 cycles at 0.1C, showing a high energy density of 469 W h kg−1. The addition of inactive copper enhances the lattice spacing, obviously reducing the irreversible reaction resistance (Rf) during the intercalation and deintercalation of Na+, thereby reducing the internal resistance of the battery and improving the cycle performance. In order to maintain the P2-type structure, the voltage is controlled at 1.5–4.0 V during charging and discharging, which inhibits the phase transition of P2-O2, leading to the improvement of cycling performance. Therefore, the Cu-substituted Na0.44Mn0.6Ni0.3Cu0.1O2 possibly serves as a promising high capacity, high energy density and stable cathode for sodium ion battery applications.
doi_str_mv 10.1039/c8ta04791j
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2063490630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063490630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-9c9b9cbb86a37a5758aa157ebcf75c5744f8d4c2c8c6a525b31ed481d6e0edc23</originalsourceid><addsrcrecordid>eNo9jT1PwzAYhC0EElXpwi-wxJzw-tseq4ovqbQMMFeO7TSu2qTEjlD-PUEgbri75Z5D6JZASYCZe6ezBa4MOVygGQUBheJGXv53ra_RIqUDTNIA0pgZ8kv8Ros8ngPeWCg5f22hlJsIJVsNE3dLsbO56XzAJ5tDH-0Rf8Xc4CbuGxza0O9H7EObYh5x3fU4dT4OpyJ2La5s_lmEdIOuantMYfGXc_Tx-PC-ei7W26eX1XJdOCpJLowzlXFVpaVlygoltLVEqFC5WgknFOe19txRp520goqKkeC5Jl4GCN5RNkd3v9xz330OIeXdoRv6drrcUZCMm8mAfQO5-FYm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063490630</pqid></control><display><type>article</type><title>A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries</title><source>Royal Society of Chemistry</source><creator>Chen, Tao ; Liu, Weifang ; Gao, Han ; Yi Zhuo ; Hu, Hang ; Chen, Ao ; Zhang, Jianwen ; Yan, Jun ; Liu, Kaiyu</creator><creatorcontrib>Chen, Tao ; Liu, Weifang ; Gao, Han ; Yi Zhuo ; Hu, Hang ; Chen, Ao ; Zhang, Jianwen ; Yan, Jun ; Liu, Kaiyu</creatorcontrib><description>The lack of high-performance cathode materials is a great challenge for the development of large-scale energy storage sodium ion batteries. Here, a new resource-rich P2-type Na0.44Mn0.6Ni0.4−xCuxO2 (0 ≤ x ≤ 0.3) sodium-ion battery (NIBs) cathode material was designed and synthesized by a sol–gel method. Na ions occupy the Naf sites and the Nae sites in a proportion of 1 : 1, which maintains the high symmetry and stability of the P2-type structure. The charging/discharging tests show that Na0.44Mn0.6Ni0.3Cu0.1O2 has a high initial capacity of 149 mA h g−1 and 80% capacity retention after 50 cycles at 0.1C, showing a high energy density of 469 W h kg−1. The addition of inactive copper enhances the lattice spacing, obviously reducing the irreversible reaction resistance (Rf) during the intercalation and deintercalation of Na+, thereby reducing the internal resistance of the battery and improving the cycle performance. In order to maintain the P2-type structure, the voltage is controlled at 1.5–4.0 V during charging and discharging, which inhibits the phase transition of P2-O2, leading to the improvement of cycling performance. Therefore, the Cu-substituted Na0.44Mn0.6Ni0.3Cu0.1O2 possibly serves as a promising high capacity, high energy density and stable cathode for sodium ion battery applications.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c8ta04791j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Battery cycles ; Cathodes ; Charging ; Chemical synthesis ; Copper ; Discharge ; Electrode materials ; Energy storage ; Flux density ; Phase transitions ; Rechargeable batteries ; Sodium ; Sodium-ion batteries ; Sol-gel processes ; Storage batteries</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (26), p.12582-12588</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c261t-9c9b9cbb86a37a5758aa157ebcf75c5744f8d4c2c8c6a525b31ed481d6e0edc23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Liu, Weifang</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Yi Zhuo</creatorcontrib><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>Chen, Ao</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Liu, Kaiyu</creatorcontrib><title>A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The lack of high-performance cathode materials is a great challenge for the development of large-scale energy storage sodium ion batteries. Here, a new resource-rich P2-type Na0.44Mn0.6Ni0.4−xCuxO2 (0 ≤ x ≤ 0.3) sodium-ion battery (NIBs) cathode material was designed and synthesized by a sol–gel method. Na ions occupy the Naf sites and the Nae sites in a proportion of 1 : 1, which maintains the high symmetry and stability of the P2-type structure. The charging/discharging tests show that Na0.44Mn0.6Ni0.3Cu0.1O2 has a high initial capacity of 149 mA h g−1 and 80% capacity retention after 50 cycles at 0.1C, showing a high energy density of 469 W h kg−1. The addition of inactive copper enhances the lattice spacing, obviously reducing the irreversible reaction resistance (Rf) during the intercalation and deintercalation of Na+, thereby reducing the internal resistance of the battery and improving the cycle performance. In order to maintain the P2-type structure, the voltage is controlled at 1.5–4.0 V during charging and discharging, which inhibits the phase transition of P2-O2, leading to the improvement of cycling performance. Therefore, the Cu-substituted Na0.44Mn0.6Ni0.3Cu0.1O2 possibly serves as a promising high capacity, high energy density and stable cathode for sodium ion battery applications.</description><subject>Battery cycles</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Chemical synthesis</subject><subject>Copper</subject><subject>Discharge</subject><subject>Electrode materials</subject><subject>Energy storage</subject><subject>Flux density</subject><subject>Phase transitions</subject><subject>Rechargeable batteries</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Sol-gel processes</subject><subject>Storage batteries</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jT1PwzAYhC0EElXpwi-wxJzw-tseq4ovqbQMMFeO7TSu2qTEjlD-PUEgbri75Z5D6JZASYCZe6ezBa4MOVygGQUBheJGXv53ra_RIqUDTNIA0pgZ8kv8Ros8ngPeWCg5f22hlJsIJVsNE3dLsbO56XzAJ5tDH-0Rf8Xc4CbuGxza0O9H7EObYh5x3fU4dT4OpyJ2La5s_lmEdIOuantMYfGXc_Tx-PC-ei7W26eX1XJdOCpJLowzlXFVpaVlygoltLVEqFC5WgknFOe19txRp520goqKkeC5Jl4GCN5RNkd3v9xz330OIeXdoRv6drrcUZCMm8mAfQO5-FYm</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Chen, Tao</creator><creator>Liu, Weifang</creator><creator>Gao, Han</creator><creator>Yi Zhuo</creator><creator>Hu, Hang</creator><creator>Chen, Ao</creator><creator>Zhang, Jianwen</creator><creator>Yan, Jun</creator><creator>Liu, Kaiyu</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2018</creationdate><title>A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries</title><author>Chen, Tao ; Liu, Weifang ; Gao, Han ; Yi Zhuo ; Hu, Hang ; Chen, Ao ; Zhang, Jianwen ; Yan, Jun ; Liu, Kaiyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-9c9b9cbb86a37a5758aa157ebcf75c5744f8d4c2c8c6a525b31ed481d6e0edc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Battery cycles</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Chemical synthesis</topic><topic>Copper</topic><topic>Discharge</topic><topic>Electrode materials</topic><topic>Energy storage</topic><topic>Flux density</topic><topic>Phase transitions</topic><topic>Rechargeable batteries</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Sol-gel processes</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Liu, Weifang</creatorcontrib><creatorcontrib>Gao, Han</creatorcontrib><creatorcontrib>Yi Zhuo</creatorcontrib><creatorcontrib>Hu, Hang</creatorcontrib><creatorcontrib>Chen, Ao</creatorcontrib><creatorcontrib>Zhang, Jianwen</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Liu, Kaiyu</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tao</au><au>Liu, Weifang</au><au>Gao, Han</au><au>Yi Zhuo</au><au>Hu, Hang</au><au>Chen, Ao</au><au>Zhang, Jianwen</au><au>Yan, Jun</au><au>Liu, Kaiyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>26</issue><spage>12582</spage><epage>12588</epage><pages>12582-12588</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The lack of high-performance cathode materials is a great challenge for the development of large-scale energy storage sodium ion batteries. Here, a new resource-rich P2-type Na0.44Mn0.6Ni0.4−xCuxO2 (0 ≤ x ≤ 0.3) sodium-ion battery (NIBs) cathode material was designed and synthesized by a sol–gel method. Na ions occupy the Naf sites and the Nae sites in a proportion of 1 : 1, which maintains the high symmetry and stability of the P2-type structure. The charging/discharging tests show that Na0.44Mn0.6Ni0.3Cu0.1O2 has a high initial capacity of 149 mA h g−1 and 80% capacity retention after 50 cycles at 0.1C, showing a high energy density of 469 W h kg−1. The addition of inactive copper enhances the lattice spacing, obviously reducing the irreversible reaction resistance (Rf) during the intercalation and deintercalation of Na+, thereby reducing the internal resistance of the battery and improving the cycle performance. In order to maintain the P2-type structure, the voltage is controlled at 1.5–4.0 V during charging and discharging, which inhibits the phase transition of P2-O2, leading to the improvement of cycling performance. Therefore, the Cu-substituted Na0.44Mn0.6Ni0.3Cu0.1O2 possibly serves as a promising high capacity, high energy density and stable cathode for sodium ion battery applications.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c8ta04791j</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (26), p.12582-12588
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2063490630
source Royal Society of Chemistry
subjects Battery cycles
Cathodes
Charging
Chemical synthesis
Copper
Discharge
Electrode materials
Energy storage
Flux density
Phase transitions
Rechargeable batteries
Sodium
Sodium-ion batteries
Sol-gel processes
Storage batteries
title A P2-type Na0.44Mn0.6Ni0.3Cu0.1O2 cathode material with high energy density for sodium-ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20P2-type%20Na0.44Mn0.6Ni0.3Cu0.1O2%20cathode%20material%20with%20high%20energy%20density%20for%20sodium-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chen,%20Tao&rft.date=2018&rft.volume=6&rft.issue=26&rft.spage=12582&rft.epage=12588&rft.pages=12582-12588&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c8ta04791j&rft_dat=%3Cproquest%3E2063490630%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-9c9b9cbb86a37a5758aa157ebcf75c5744f8d4c2c8c6a525b31ed481d6e0edc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063490630&rft_id=info:pmid/&rfr_iscdi=true