Loading…

Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km

An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1 , and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the...

Full description

Saved in:
Bibliographic Details
Published in:Cosmic research 2018, Vol.56 (1), p.32-37
Main Authors: Kalegaev, V. V., Barinova, W. O., Myagkova, I. N., Eremeev, V. E., Parunakyan, D. A., Nguyen, M. D., Barinov, O. G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-5365c8a45d3a1a096e164087f51ea9af52bd8f01993e105d6cbd01870387473b3
cites cdi_FETCH-LOGICAL-c316t-5365c8a45d3a1a096e164087f51ea9af52bd8f01993e105d6cbd01870387473b3
container_end_page 37
container_issue 1
container_start_page 32
container_title Cosmic research
container_volume 56
creator Kalegaev, V. V.
Barinova, W. O.
Myagkova, I. N.
Eremeev, V. E.
Parunakyan, D. A.
Nguyen, M. D.
Barinov, O. G.
description An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1 , and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.
doi_str_mv 10.1134/S0010952518010069
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063531176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063531176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5365c8a45d3a1a096e164087f51ea9af52bd8f01993e105d6cbd01870387473b3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOF4ewF3AdfWcpknbpQzjBQZcqOuSNum0Y9vMJOnCna_h6_kkplRxIcKBc-D_v3Mj5ALhCpEl108ACDmPOWahAJEfkAUKyCIGKT8ki0mOJv2YnDi3BYA8ZWJB9qt-19q2kh3tjdIdNTX1jaZNu2miTvrWj0rT0oyDkvbtR11J65vP9w9Hzei1pVaqNnjNQEvdeSpDdDPqJmTcUW9oWAvoa39GjmrZOX3-nU_Jy-3qeXkfrR_vHpY366hiKHzEmeBVJhOumEQJudAoEsjSmqOWuax5XKqsBsxzphG4ElWpALMUWJYmKSvZKbmc--6s2Y_a-WJrRjuEkUUMgnGGmIrgwtlVWeOc1XWxs20fTi0QiumzxZ_PBiaeGRe8w0bb387_Q1-Benmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063531176</pqid></control><display><type>article</type><title>Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km</title><source>Springer Link</source><creator>Kalegaev, V. V. ; Barinova, W. O. ; Myagkova, I. N. ; Eremeev, V. E. ; Parunakyan, D. A. ; Nguyen, M. D. ; Barinov, O. G.</creator><creatorcontrib>Kalegaev, V. V. ; Barinova, W. O. ; Myagkova, I. N. ; Eremeev, V. E. ; Parunakyan, D. A. ; Nguyen, M. D. ; Barinov, O. G.</creatorcontrib><description>An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1 , and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.</description><identifier>ISSN: 0010-9525</identifier><identifier>EISSN: 1608-3075</identifier><identifier>DOI: 10.1134/S0010952518010069</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Astronomy ; Astrophysics and Astroparticles ; Astrophysics and Cosmology ; Corona ; Coronas ; Earth rotation ; Electron density ; Electron flux ; Empirical models ; Equator ; Geomagnetic activity ; Geomagnetism ; Intersections ; Jupiter ; Latitude ; Magnetic fields ; Mathematical models ; Numerical analysis ; Outer radiation belt ; Physics ; Physics and Astronomy ; Radiation ; Satellites ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Time dependence ; Trapped electrons ; Universal time</subject><ispartof>Cosmic research, 2018, Vol.56 (1), p.32-37</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5365c8a45d3a1a096e164087f51ea9af52bd8f01993e105d6cbd01870387473b3</citedby><cites>FETCH-LOGICAL-c316t-5365c8a45d3a1a096e164087f51ea9af52bd8f01993e105d6cbd01870387473b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kalegaev, V. V.</creatorcontrib><creatorcontrib>Barinova, W. O.</creatorcontrib><creatorcontrib>Myagkova, I. N.</creatorcontrib><creatorcontrib>Eremeev, V. E.</creatorcontrib><creatorcontrib>Parunakyan, D. A.</creatorcontrib><creatorcontrib>Nguyen, M. D.</creatorcontrib><creatorcontrib>Barinov, O. G.</creatorcontrib><title>Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km</title><title>Cosmic research</title><addtitle>Cosmic Res</addtitle><description>An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1 , and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.</description><subject>Astronomy</subject><subject>Astrophysics and Astroparticles</subject><subject>Astrophysics and Cosmology</subject><subject>Corona</subject><subject>Coronas</subject><subject>Earth rotation</subject><subject>Electron density</subject><subject>Electron flux</subject><subject>Empirical models</subject><subject>Equator</subject><subject>Geomagnetic activity</subject><subject>Geomagnetism</subject><subject>Intersections</subject><subject>Jupiter</subject><subject>Latitude</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Outer radiation belt</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Radiation</subject><subject>Satellites</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Time dependence</subject><subject>Trapped electrons</subject><subject>Universal time</subject><issn>0010-9525</issn><issn>1608-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOF4ewF3AdfWcpknbpQzjBQZcqOuSNum0Y9vMJOnCna_h6_kkplRxIcKBc-D_v3Mj5ALhCpEl108ACDmPOWahAJEfkAUKyCIGKT8ki0mOJv2YnDi3BYA8ZWJB9qt-19q2kh3tjdIdNTX1jaZNu2miTvrWj0rT0oyDkvbtR11J65vP9w9Hzei1pVaqNnjNQEvdeSpDdDPqJmTcUW9oWAvoa39GjmrZOX3-nU_Jy-3qeXkfrR_vHpY366hiKHzEmeBVJhOumEQJudAoEsjSmqOWuax5XKqsBsxzphG4ElWpALMUWJYmKSvZKbmc--6s2Y_a-WJrRjuEkUUMgnGGmIrgwtlVWeOc1XWxs20fTi0QiumzxZ_PBiaeGRe8w0bb387_Q1-Benmw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kalegaev, V. V.</creator><creator>Barinova, W. O.</creator><creator>Myagkova, I. N.</creator><creator>Eremeev, V. E.</creator><creator>Parunakyan, D. A.</creator><creator>Nguyen, M. D.</creator><creator>Barinov, O. G.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>2018</creationdate><title>Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km</title><author>Kalegaev, V. V. ; Barinova, W. O. ; Myagkova, I. N. ; Eremeev, V. E. ; Parunakyan, D. A. ; Nguyen, M. D. ; Barinov, O. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5365c8a45d3a1a096e164087f51ea9af52bd8f01993e105d6cbd01870387473b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Astronomy</topic><topic>Astrophysics and Astroparticles</topic><topic>Astrophysics and Cosmology</topic><topic>Corona</topic><topic>Coronas</topic><topic>Earth rotation</topic><topic>Electron density</topic><topic>Electron flux</topic><topic>Empirical models</topic><topic>Equator</topic><topic>Geomagnetic activity</topic><topic>Geomagnetism</topic><topic>Intersections</topic><topic>Jupiter</topic><topic>Latitude</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Outer radiation belt</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Radiation</topic><topic>Satellites</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Time dependence</topic><topic>Trapped electrons</topic><topic>Universal time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalegaev, V. V.</creatorcontrib><creatorcontrib>Barinova, W. O.</creatorcontrib><creatorcontrib>Myagkova, I. N.</creatorcontrib><creatorcontrib>Eremeev, V. E.</creatorcontrib><creatorcontrib>Parunakyan, D. A.</creatorcontrib><creatorcontrib>Nguyen, M. D.</creatorcontrib><creatorcontrib>Barinov, O. G.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Cosmic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalegaev, V. V.</au><au>Barinova, W. O.</au><au>Myagkova, I. N.</au><au>Eremeev, V. E.</au><au>Parunakyan, D. A.</au><au>Nguyen, M. D.</au><au>Barinov, O. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km</atitle><jtitle>Cosmic research</jtitle><stitle>Cosmic Res</stitle><date>2018</date><risdate>2018</risdate><volume>56</volume><issue>1</issue><spage>32</spage><epage>37</epage><pages>32-37</pages><issn>0010-9525</issn><eissn>1608-3075</eissn><abstract>An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1 , and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010952518010069</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-9525
ispartof Cosmic research, 2018, Vol.56 (1), p.32-37
issn 0010-9525
1608-3075
language eng
recordid cdi_proquest_journals_2063531176
source Springer Link
subjects Astronomy
Astrophysics and Astroparticles
Astrophysics and Cosmology
Corona
Coronas
Earth rotation
Electron density
Electron flux
Empirical models
Equator
Geomagnetic activity
Geomagnetism
Intersections
Jupiter
Latitude
Magnetic fields
Mathematical models
Numerical analysis
Outer radiation belt
Physics
Physics and Astronomy
Radiation
Satellites
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Time dependence
Trapped electrons
Universal time
title Empirical model of the high-latitude boundary of the Earth’s outer radiation belt at altitudes of up to 1000 km
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T09%3A39%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20model%20of%20the%20high-latitude%20boundary%20of%20the%20Earth%E2%80%99s%20outer%20radiation%20belt%20at%20altitudes%20of%20up%20to%201000%20km&rft.jtitle=Cosmic%20research&rft.au=Kalegaev,%20V.%20V.&rft.date=2018&rft.volume=56&rft.issue=1&rft.spage=32&rft.epage=37&rft.pages=32-37&rft.issn=0010-9525&rft.eissn=1608-3075&rft_id=info:doi/10.1134/S0010952518010069&rft_dat=%3Cproquest_cross%3E2063531176%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-5365c8a45d3a1a096e164087f51ea9af52bd8f01993e105d6cbd01870387473b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063531176&rft_id=info:pmid/&rfr_iscdi=true