Loading…
A survey of sentiment analysis in social media
Sentiments or opinions from social media provide the most up-to-date and inclusive information, due to the proliferation of social media and the low barrier for posting the message. Despite the growing importance of sentiment analysis, this area lacks a concise and systematic arrangement of prior ef...
Saved in:
Published in: | Knowledge and information systems 2019-08, Vol.60 (2), p.617-663 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-e4db21635dd619711f2953762862567c926e1128c9edb7e26db8e8d94c20e923 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-e4db21635dd619711f2953762862567c926e1128c9edb7e26db8e8d94c20e923 |
container_end_page | 663 |
container_issue | 2 |
container_start_page | 617 |
container_title | Knowledge and information systems |
container_volume | 60 |
creator | Yue, Lin Chen, Weitong Li, Xue Zuo, Wanli Yin, Minghao |
description | Sentiments or opinions from social media provide the most up-to-date and inclusive information, due to the proliferation of social media and the low barrier for posting the message. Despite the growing importance of sentiment analysis, this area lacks a concise and systematic arrangement of prior efforts. It is essential to: (1) analyze its progress over the years, (2) provide an overview of the main advances achieved so far, and (3) outline remaining limitations. Several essential aspects, therefore, are addressed within the scope of this survey. On the one hand, this paper focuses on presenting typical methods from three different perspectives (task-oriented, granularity-oriented, methodology-oriented) in the area of sentiment analysis. Specifically, a large quantity of techniques and methods are categorized and compared. On the other hand, different types of data and advanced tools for research are introduced, as well as their limitations. On the basis of these materials, the essential prospects lying ahead for sentiment analysis are identified and discussed. |
doi_str_mv | 10.1007/s10115-018-1236-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063532328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063532328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e4db21635dd619711f2953762862567c926e1128c9edb7e26db8e8d94c20e923</originalsourceid><addsrcrecordid>eNp1kE1rwzAMhs3YYF23H7CbYWd3lpzY8bGUfUFhl95NGisjpU06qx30388lhZ12kXR43hfxCPEIegZau2cGDVAqDZUCNFYVV2KiEbwyAPb6coNx7lbcMW-0BmcBJmI2l3xMP3SSQyuZ-kO3y0PWfb09ccey6yUPTVdv5Y5iV9-Lm7beMj1c9lSsXl9Wi3e1_Hz7WMyXqjFgD4qKuEawpozRgncALfrSOIuVxdK6xqMlAKwaT3HtCG1cV1RFXzSoyaOZiqexdp-G7yPxIWyGY8o_cUCdaw0arDIFI9WkgTlRG_ap29XpFECHs5UwWgnZSjhbCUXO4JjhzPZflP6a_w_9AofHYiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063532328</pqid></control><display><type>article</type><title>A survey of sentiment analysis in social media</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Yue, Lin ; Chen, Weitong ; Li, Xue ; Zuo, Wanli ; Yin, Minghao</creator><creatorcontrib>Yue, Lin ; Chen, Weitong ; Li, Xue ; Zuo, Wanli ; Yin, Minghao</creatorcontrib><description>Sentiments or opinions from social media provide the most up-to-date and inclusive information, due to the proliferation of social media and the low barrier for posting the message. Despite the growing importance of sentiment analysis, this area lacks a concise and systematic arrangement of prior efforts. It is essential to: (1) analyze its progress over the years, (2) provide an overview of the main advances achieved so far, and (3) outline remaining limitations. Several essential aspects, therefore, are addressed within the scope of this survey. On the one hand, this paper focuses on presenting typical methods from three different perspectives (task-oriented, granularity-oriented, methodology-oriented) in the area of sentiment analysis. Specifically, a large quantity of techniques and methods are categorized and compared. On the other hand, different types of data and advanced tools for research are introduced, as well as their limitations. On the basis of these materials, the essential prospects lying ahead for sentiment analysis are identified and discussed.</description><identifier>ISSN: 0219-1377</identifier><identifier>EISSN: 0219-3116</identifier><identifier>DOI: 10.1007/s10115-018-1236-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Computer Science ; Data mining ; Data Mining and Knowledge Discovery ; Database Management ; Digital media ; Information Storage and Retrieval ; Information Systems and Communication Service ; Information Systems Applications (incl.Internet) ; IT in Business ; Sentiment analysis ; Social networks ; Survey Paper</subject><ispartof>Knowledge and information systems, 2019-08, Vol.60 (2), p.617-663</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2018</rights><rights>Knowledge and Information Systems is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e4db21635dd619711f2953762862567c926e1128c9edb7e26db8e8d94c20e923</citedby><cites>FETCH-LOGICAL-c316t-e4db21635dd619711f2953762862567c926e1128c9edb7e26db8e8d94c20e923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2063532328/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2063532328?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11668,27903,27904,36039,44342,74641</link.rule.ids></links><search><creatorcontrib>Yue, Lin</creatorcontrib><creatorcontrib>Chen, Weitong</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Zuo, Wanli</creatorcontrib><creatorcontrib>Yin, Minghao</creatorcontrib><title>A survey of sentiment analysis in social media</title><title>Knowledge and information systems</title><addtitle>Knowl Inf Syst</addtitle><description>Sentiments or opinions from social media provide the most up-to-date and inclusive information, due to the proliferation of social media and the low barrier for posting the message. Despite the growing importance of sentiment analysis, this area lacks a concise and systematic arrangement of prior efforts. It is essential to: (1) analyze its progress over the years, (2) provide an overview of the main advances achieved so far, and (3) outline remaining limitations. Several essential aspects, therefore, are addressed within the scope of this survey. On the one hand, this paper focuses on presenting typical methods from three different perspectives (task-oriented, granularity-oriented, methodology-oriented) in the area of sentiment analysis. Specifically, a large quantity of techniques and methods are categorized and compared. On the other hand, different types of data and advanced tools for research are introduced, as well as their limitations. On the basis of these materials, the essential prospects lying ahead for sentiment analysis are identified and discussed.</description><subject>Computer Science</subject><subject>Data mining</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Digital media</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems and Communication Service</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>IT in Business</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Survey Paper</subject><issn>0219-1377</issn><issn>0219-3116</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1rwzAMhs3YYF23H7CbYWd3lpzY8bGUfUFhl95NGisjpU06qx30388lhZ12kXR43hfxCPEIegZau2cGDVAqDZUCNFYVV2KiEbwyAPb6coNx7lbcMW-0BmcBJmI2l3xMP3SSQyuZ-kO3y0PWfb09ccey6yUPTVdv5Y5iV9-Lm7beMj1c9lSsXl9Wi3e1_Hz7WMyXqjFgD4qKuEawpozRgncALfrSOIuVxdK6xqMlAKwaT3HtCG1cV1RFXzSoyaOZiqexdp-G7yPxIWyGY8o_cUCdaw0arDIFI9WkgTlRG_ap29XpFECHs5UwWgnZSjhbCUXO4JjhzPZflP6a_w_9AofHYiU</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Yue, Lin</creator><creator>Chen, Weitong</creator><creator>Li, Xue</creator><creator>Zuo, Wanli</creator><creator>Yin, Minghao</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20190801</creationdate><title>A survey of sentiment analysis in social media</title><author>Yue, Lin ; Chen, Weitong ; Li, Xue ; Zuo, Wanli ; Yin, Minghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e4db21635dd619711f2953762862567c926e1128c9edb7e26db8e8d94c20e923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Data mining</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Digital media</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems and Communication Service</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>IT in Business</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Survey Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Lin</creatorcontrib><creatorcontrib>Chen, Weitong</creatorcontrib><creatorcontrib>Li, Xue</creatorcontrib><creatorcontrib>Zuo, Wanli</creatorcontrib><creatorcontrib>Yin, Minghao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Knowledge and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yue, Lin</au><au>Chen, Weitong</au><au>Li, Xue</au><au>Zuo, Wanli</au><au>Yin, Minghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey of sentiment analysis in social media</atitle><jtitle>Knowledge and information systems</jtitle><stitle>Knowl Inf Syst</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>60</volume><issue>2</issue><spage>617</spage><epage>663</epage><pages>617-663</pages><issn>0219-1377</issn><eissn>0219-3116</eissn><abstract>Sentiments or opinions from social media provide the most up-to-date and inclusive information, due to the proliferation of social media and the low barrier for posting the message. Despite the growing importance of sentiment analysis, this area lacks a concise and systematic arrangement of prior efforts. It is essential to: (1) analyze its progress over the years, (2) provide an overview of the main advances achieved so far, and (3) outline remaining limitations. Several essential aspects, therefore, are addressed within the scope of this survey. On the one hand, this paper focuses on presenting typical methods from three different perspectives (task-oriented, granularity-oriented, methodology-oriented) in the area of sentiment analysis. Specifically, a large quantity of techniques and methods are categorized and compared. On the other hand, different types of data and advanced tools for research are introduced, as well as their limitations. On the basis of these materials, the essential prospects lying ahead for sentiment analysis are identified and discussed.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s10115-018-1236-4</doi><tpages>47</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0219-1377 |
ispartof | Knowledge and information systems, 2019-08, Vol.60 (2), p.617-663 |
issn | 0219-1377 0219-3116 |
language | eng |
recordid | cdi_proquest_journals_2063532328 |
source | ABI/INFORM Global; Springer Nature |
subjects | Computer Science Data mining Data Mining and Knowledge Discovery Database Management Digital media Information Storage and Retrieval Information Systems and Communication Service Information Systems Applications (incl.Internet) IT in Business Sentiment analysis Social networks Survey Paper |
title | A survey of sentiment analysis in social media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20of%20sentiment%20analysis%20in%20social%20media&rft.jtitle=Knowledge%20and%20information%20systems&rft.au=Yue,%20Lin&rft.date=2019-08-01&rft.volume=60&rft.issue=2&rft.spage=617&rft.epage=663&rft.pages=617-663&rft.issn=0219-1377&rft.eissn=0219-3116&rft_id=info:doi/10.1007/s10115-018-1236-4&rft_dat=%3Cproquest_cross%3E2063532328%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-e4db21635dd619711f2953762862567c926e1128c9edb7e26db8e8d94c20e923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063532328&rft_id=info:pmid/&rfr_iscdi=true |