Loading…
Compactness results for static and dynamic chiral skyrmions near the conformal limit
We examine lower order perturbations of the harmonic map problem from R 2 to S 2 including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic sy...
Saved in:
Published in: | Calculus of variations and partial differential equations 2017-06, Vol.56 (3), p.1-30, Article 60 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93 |
container_end_page | 30 |
container_issue | 3 |
container_start_page | 1 |
container_title | Calculus of variations and partial differential equations |
container_volume | 56 |
creator | Döring, Lukas Melcher, Christof |
description | We examine lower order perturbations of the harmonic map problem from
R
2
to
S
2
including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current. |
doi_str_mv | 10.1007/s00526-017-1172-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063619650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063619650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hF4hxwkjZtj2jiS5rEZZyjNE1YR5uOODvs35OpSJw42ZLfx7YeQm453HOA6gEBSqEY8IpxXgkmzsiCF1IwqGV5ThbQFAUTSjWX5ApxB8DLWhQLsllN497YFBwijQ4PQ0Lqp0gxmdRbakJHu2MwY-7tto9moPh1jGM_BaTBmUjT1lE7hcyMeTj0Y5-uyYU3A7qb37okH89Pm9UrW7-_vK0e18zKWiTGpbSeS9c603qvSlUb6fOjTvGu8kULvi5UWQnHHYB3sjOVU9BY2XZtYWwjl-Ru3ruP0_fBYdK76RBDPqkFKKl4o0rIKT6nbJwQo_N6H_vRxKPmoE_y9CxPZ3n6JE-LzIiZwZwNny7-bf4f-gE1_nMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063619650</pqid></control><display><type>article</type><title>Compactness results for static and dynamic chiral skyrmions near the conformal limit</title><source>Springer Nature</source><creator>Döring, Lukas ; Melcher, Christof</creator><creatorcontrib>Döring, Lukas ; Melcher, Christof</creatorcontrib><description>We examine lower order perturbations of the harmonic map problem from
R
2
to
S
2
including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1172-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dynamic stability ; Functionals ; Helicity ; Hypothetical particles ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Particle theory ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2017-06, Vol.56 (3), p.1-30, Article 60</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</citedby><cites>FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Döring, Lukas</creatorcontrib><creatorcontrib>Melcher, Christof</creatorcontrib><title>Compactness results for static and dynamic chiral skyrmions near the conformal limit</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We examine lower order perturbations of the harmonic map problem from
R
2
to
S
2
including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dynamic stability</subject><subject>Functionals</subject><subject>Helicity</subject><subject>Hypothetical particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Particle theory</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmPwA7hF4hxwkjZtj2jiS5rEZZyjNE1YR5uOODvs35OpSJw42ZLfx7YeQm453HOA6gEBSqEY8IpxXgkmzsiCF1IwqGV5ThbQFAUTSjWX5ApxB8DLWhQLsllN497YFBwijQ4PQ0Lqp0gxmdRbakJHu2MwY-7tto9moPh1jGM_BaTBmUjT1lE7hcyMeTj0Y5-uyYU3A7qb37okH89Pm9UrW7-_vK0e18zKWiTGpbSeS9c603qvSlUb6fOjTvGu8kULvi5UWQnHHYB3sjOVU9BY2XZtYWwjl-Ru3ruP0_fBYdK76RBDPqkFKKl4o0rIKT6nbJwQo_N6H_vRxKPmoE_y9CxPZ3n6JE-LzIiZwZwNny7-bf4f-gE1_nMs</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Döring, Lukas</creator><creator>Melcher, Christof</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20170601</creationdate><title>Compactness results for static and dynamic chiral skyrmions near the conformal limit</title><author>Döring, Lukas ; Melcher, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dynamic stability</topic><topic>Functionals</topic><topic>Helicity</topic><topic>Hypothetical particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Particle theory</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Döring, Lukas</creatorcontrib><creatorcontrib>Melcher, Christof</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Döring, Lukas</au><au>Melcher, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compactness results for static and dynamic chiral skyrmions near the conformal limit</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>56</volume><issue>3</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><artnum>60</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We examine lower order perturbations of the harmonic map problem from
R
2
to
S
2
including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-017-1172-2</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2017-06, Vol.56 (3), p.1-30, Article 60 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2063619650 |
source | Springer Nature |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Dynamic stability Functionals Helicity Hypothetical particles Mathematical and Computational Physics Mathematics Mathematics and Statistics Particle theory Systems Theory Theoretical |
title | Compactness results for static and dynamic chiral skyrmions near the conformal limit |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compactness%20results%20for%20static%20and%20dynamic%20chiral%20skyrmions%20near%20the%20conformal%20limit&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=D%C3%B6ring,%20Lukas&rft.date=2017-06-01&rft.volume=56&rft.issue=3&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.artnum=60&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1172-2&rft_dat=%3Cproquest_cross%3E2063619650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063619650&rft_id=info:pmid/&rfr_iscdi=true |