Loading…

Compactness results for static and dynamic chiral skyrmions near the conformal limit

We examine lower order perturbations of the harmonic map problem from R 2 to S 2 including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic sy...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2017-06, Vol.56 (3), p.1-30, Article 60
Main Authors: Döring, Lukas, Melcher, Christof
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93
cites cdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93
container_end_page 30
container_issue 3
container_start_page 1
container_title Calculus of variations and partial differential equations
container_volume 56
creator Döring, Lukas
Melcher, Christof
description We examine lower order perturbations of the harmonic map problem from R 2 to S 2 including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current.
doi_str_mv 10.1007/s00526-017-1172-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063619650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2063619650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEmPwA7hF4hxwkjZtj2jiS5rEZZyjNE1YR5uOODvs35OpSJw42ZLfx7YeQm453HOA6gEBSqEY8IpxXgkmzsiCF1IwqGV5ThbQFAUTSjWX5ApxB8DLWhQLsllN497YFBwijQ4PQ0Lqp0gxmdRbakJHu2MwY-7tto9moPh1jGM_BaTBmUjT1lE7hcyMeTj0Y5-uyYU3A7qb37okH89Pm9UrW7-_vK0e18zKWiTGpbSeS9c603qvSlUb6fOjTvGu8kULvi5UWQnHHYB3sjOVU9BY2XZtYWwjl-Ru3ruP0_fBYdK76RBDPqkFKKl4o0rIKT6nbJwQo_N6H_vRxKPmoE_y9CxPZ3n6JE-LzIiZwZwNny7-bf4f-gE1_nMs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063619650</pqid></control><display><type>article</type><title>Compactness results for static and dynamic chiral skyrmions near the conformal limit</title><source>Springer Nature</source><creator>Döring, Lukas ; Melcher, Christof</creator><creatorcontrib>Döring, Lukas ; Melcher, Christof</creatorcontrib><description>We examine lower order perturbations of the harmonic map problem from R 2 to S 2 including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-017-1172-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Dynamic stability ; Functionals ; Helicity ; Hypothetical particles ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Particle theory ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2017-06, Vol.56 (3), p.1-30, Article 60</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</citedby><cites>FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Döring, Lukas</creatorcontrib><creatorcontrib>Melcher, Christof</creatorcontrib><title>Compactness results for static and dynamic chiral skyrmions near the conformal limit</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>We examine lower order perturbations of the harmonic map problem from R 2 to S 2 including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Dynamic stability</subject><subject>Functionals</subject><subject>Helicity</subject><subject>Hypothetical particles</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Particle theory</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEmPwA7hF4hxwkjZtj2jiS5rEZZyjNE1YR5uOODvs35OpSJw42ZLfx7YeQm453HOA6gEBSqEY8IpxXgkmzsiCF1IwqGV5ThbQFAUTSjWX5ApxB8DLWhQLsllN497YFBwijQ4PQ0Lqp0gxmdRbakJHu2MwY-7tto9moPh1jGM_BaTBmUjT1lE7hcyMeTj0Y5-uyYU3A7qb37okH89Pm9UrW7-_vK0e18zKWiTGpbSeS9c603qvSlUb6fOjTvGu8kULvi5UWQnHHYB3sjOVU9BY2XZtYWwjl-Ru3ruP0_fBYdK76RBDPqkFKKl4o0rIKT6nbJwQo_N6H_vRxKPmoE_y9CxPZ3n6JE-LzIiZwZwNny7-bf4f-gE1_nMs</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Döring, Lukas</creator><creator>Melcher, Christof</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20170601</creationdate><title>Compactness results for static and dynamic chiral skyrmions near the conformal limit</title><author>Döring, Lukas ; Melcher, Christof</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Dynamic stability</topic><topic>Functionals</topic><topic>Helicity</topic><topic>Hypothetical particles</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Particle theory</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Döring, Lukas</creatorcontrib><creatorcontrib>Melcher, Christof</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Döring, Lukas</au><au>Melcher, Christof</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compactness results for static and dynamic chiral skyrmions near the conformal limit</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2017-06-01</date><risdate>2017</risdate><volume>56</volume><issue>3</issue><spage>1</spage><epage>30</epage><pages>1-30</pages><artnum>60</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>We examine lower order perturbations of the harmonic map problem from R 2 to S 2 including chiral interaction in form of a helicity term that prefers modulation, and a potential term that enables decay to a uniform background state. Energy functionals of this type arise in the context of magnetic systems without inversion symmetry. In the almost conformal regime, where these perturbations are weighted with a small parameter, we examine the existence of relative minimizers in a non-trivial homotopy class, so-called chiral skyrmions, strong compactness of almost minimizers, and their asymptotic limit. Finally we examine dynamic stability and compactness of almost minimizers in the context of the Landau–Lifshitz–Gilbert equation including spin-transfer torques arising from the interaction with an external current.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-017-1172-2</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2017-06, Vol.56 (3), p.1-30, Article 60
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2063619650
source Springer Nature
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Dynamic stability
Functionals
Helicity
Hypothetical particles
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Particle theory
Systems Theory
Theoretical
title Compactness results for static and dynamic chiral skyrmions near the conformal limit
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A12%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compactness%20results%20for%20static%20and%20dynamic%20chiral%20skyrmions%20near%20the%20conformal%20limit&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=D%C3%B6ring,%20Lukas&rft.date=2017-06-01&rft.volume=56&rft.issue=3&rft.spage=1&rft.epage=30&rft.pages=1-30&rft.artnum=60&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-017-1172-2&rft_dat=%3Cproquest_cross%3E2063619650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-133cf13ebeabff6568a3f094e61d7f4b0f846572e1e00fe3da7e609c3bdb4ac93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063619650&rft_id=info:pmid/&rfr_iscdi=true