Loading…

Determining strain-induced crystallization of natural rubber composites by combined thermography and stress-strain measurements

Strain induced crystallization is essential to the physicochemical properties of polymer materials, but is difficult to investigate, as it usually requires X-ray sources in combination with stretching machines. We improve and validate a recently developed method which allows the calculation of the c...

Full description

Saved in:
Bibliographic Details
Published in:Polymer testing 2018-04, Vol.66, p.87-93
Main Authors: Plagge, J., Klüppel, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-7de3752d934b1ad7d62dd1e920eef2540f92ffc6c5e4d62144f6e6aa032c27a73
cites cdi_FETCH-LOGICAL-c358t-7de3752d934b1ad7d62dd1e920eef2540f92ffc6c5e4d62144f6e6aa032c27a73
container_end_page 93
container_issue
container_start_page 87
container_title Polymer testing
container_volume 66
creator Plagge, J.
Klüppel, M.
description Strain induced crystallization is essential to the physicochemical properties of polymer materials, but is difficult to investigate, as it usually requires X-ray sources in combination with stretching machines. We improve and validate a recently developed method which allows the calculation of the crystallinity index using easily available thermography and stress-strain data. For natural rubber, the method is shown to be reproducible and delivers results quantitatively comparable to spectroscopic methods such as wide angle X-ray scattering. The incorporation of different amounts of carbon black is shown to increase the level of crystallization and to change the shape of the strain-crystallization curves. Additionally, crystallinity during partial retraction is investigated and reveals that crystallization characteristics change at sufficiently high strain. •Strain Induced Crystallization (SIC) is quantified using stress strain data and thermography.•Results from scattering for natural rubber are reproduced.•The method is reproducible and checked for consistency with non-crystallizing polymer.•Carbon black filler shifts on and offset to lower strains.•Incomplete stretching cycles exhibit reduced hysteresis, possibly due to less supercooling.
doi_str_mv 10.1016/j.polymertesting.2017.12.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2063744858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014294181731677X</els_id><sourcerecordid>2063744858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-7de3752d934b1ad7d62dd1e920eef2540f92ffc6c5e4d62144f6e6aa032c27a73</originalsourceid><addsrcrecordid>eNqNkE1r3DAQhkVIIZtt_oOgvdqVZPljoZeybdJAIJf2LGRpnGixJXckF9xL_npktpfcchqGmfcZ5iHkM2clZ7z5cirnMK4TYIKYnH8qBeNtyUXJBL8gO961VSEq2V2SHeNSFAfJuytyHeOJMVZnwo68fIcEODmf4zQm1M4XztvFgKUG15j0OLp_OrngaRio12lBPVJc-h6QmjDNIbp8nvbr1vXO52B6zsjwhHp-Xqn2dgNDjMWZTyfQcUGYwKf4kXwY9Bjh5n_dk9-3P34dfxYPj3f3x28PhanqLhWthaqthT1UsufatrYR1nI4CAYwiFqy4SCGwTSmBplnXMqhgUZrVgkjWt1We_LpzJ0x_FmyLnUKC_p8UgnWVK2UXd3lra_nLYMhRoRBzegmjaviTG3K1Um9Va425YoLlZXn-O05DvmTvw5QRePAZ5cOwSRlg3sf6BXE5ZhP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063744858</pqid></control><display><type>article</type><title>Determining strain-induced crystallization of natural rubber composites by combined thermography and stress-strain measurements</title><source>Elsevier</source><creator>Plagge, J. ; Klüppel, M.</creator><creatorcontrib>Plagge, J. ; Klüppel, M.</creatorcontrib><description>Strain induced crystallization is essential to the physicochemical properties of polymer materials, but is difficult to investigate, as it usually requires X-ray sources in combination with stretching machines. We improve and validate a recently developed method which allows the calculation of the crystallinity index using easily available thermography and stress-strain data. For natural rubber, the method is shown to be reproducible and delivers results quantitatively comparable to spectroscopic methods such as wide angle X-ray scattering. The incorporation of different amounts of carbon black is shown to increase the level of crystallization and to change the shape of the strain-crystallization curves. Additionally, crystallinity during partial retraction is investigated and reveals that crystallization characteristics change at sufficiently high strain. •Strain Induced Crystallization (SIC) is quantified using stress strain data and thermography.•Results from scattering for natural rubber are reproduced.•The method is reproducible and checked for consistency with non-crystallizing polymer.•Carbon black filler shifts on and offset to lower strains.•Incomplete stretching cycles exhibit reduced hysteresis, possibly due to less supercooling.</description><identifier>ISSN: 0142-9418</identifier><identifier>EISSN: 1873-2348</identifier><identifier>DOI: 10.1016/j.polymertesting.2017.12.021</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Carbon black ; Crystal structure ; Crystallinity ; Crystallization ; Filler reinforcement ; Natural rubber ; Strain ; Strain induced crystallization ; Stress-strain curves ; Stress-strain relationships ; Thermography ; X ray sources ; X-ray scattering</subject><ispartof>Polymer testing, 2018-04, Vol.66, p.87-93</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-7de3752d934b1ad7d62dd1e920eef2540f92ffc6c5e4d62144f6e6aa032c27a73</citedby><cites>FETCH-LOGICAL-c358t-7de3752d934b1ad7d62dd1e920eef2540f92ffc6c5e4d62144f6e6aa032c27a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Plagge, J.</creatorcontrib><creatorcontrib>Klüppel, M.</creatorcontrib><title>Determining strain-induced crystallization of natural rubber composites by combined thermography and stress-strain measurements</title><title>Polymer testing</title><description>Strain induced crystallization is essential to the physicochemical properties of polymer materials, but is difficult to investigate, as it usually requires X-ray sources in combination with stretching machines. We improve and validate a recently developed method which allows the calculation of the crystallinity index using easily available thermography and stress-strain data. For natural rubber, the method is shown to be reproducible and delivers results quantitatively comparable to spectroscopic methods such as wide angle X-ray scattering. The incorporation of different amounts of carbon black is shown to increase the level of crystallization and to change the shape of the strain-crystallization curves. Additionally, crystallinity during partial retraction is investigated and reveals that crystallization characteristics change at sufficiently high strain. •Strain Induced Crystallization (SIC) is quantified using stress strain data and thermography.•Results from scattering for natural rubber are reproduced.•The method is reproducible and checked for consistency with non-crystallizing polymer.•Carbon black filler shifts on and offset to lower strains.•Incomplete stretching cycles exhibit reduced hysteresis, possibly due to less supercooling.</description><subject>Carbon black</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Filler reinforcement</subject><subject>Natural rubber</subject><subject>Strain</subject><subject>Strain induced crystallization</subject><subject>Stress-strain curves</subject><subject>Stress-strain relationships</subject><subject>Thermography</subject><subject>X ray sources</subject><subject>X-ray scattering</subject><issn>0142-9418</issn><issn>1873-2348</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNkE1r3DAQhkVIIZtt_oOgvdqVZPljoZeybdJAIJf2LGRpnGixJXckF9xL_npktpfcchqGmfcZ5iHkM2clZ7z5cirnMK4TYIKYnH8qBeNtyUXJBL8gO961VSEq2V2SHeNSFAfJuytyHeOJMVZnwo68fIcEODmf4zQm1M4XztvFgKUG15j0OLp_OrngaRio12lBPVJc-h6QmjDNIbp8nvbr1vXO52B6zsjwhHp-Xqn2dgNDjMWZTyfQcUGYwKf4kXwY9Bjh5n_dk9-3P34dfxYPj3f3x28PhanqLhWthaqthT1UsufatrYR1nI4CAYwiFqy4SCGwTSmBplnXMqhgUZrVgkjWt1We_LpzJ0x_FmyLnUKC_p8UgnWVK2UXd3lra_nLYMhRoRBzegmjaviTG3K1Um9Va425YoLlZXn-O05DvmTvw5QRePAZ5cOwSRlg3sf6BXE5ZhP</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Plagge, J.</creator><creator>Klüppel, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201804</creationdate><title>Determining strain-induced crystallization of natural rubber composites by combined thermography and stress-strain measurements</title><author>Plagge, J. ; Klüppel, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-7de3752d934b1ad7d62dd1e920eef2540f92ffc6c5e4d62144f6e6aa032c27a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Carbon black</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Filler reinforcement</topic><topic>Natural rubber</topic><topic>Strain</topic><topic>Strain induced crystallization</topic><topic>Stress-strain curves</topic><topic>Stress-strain relationships</topic><topic>Thermography</topic><topic>X ray sources</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Plagge, J.</creatorcontrib><creatorcontrib>Klüppel, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer testing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plagge, J.</au><au>Klüppel, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determining strain-induced crystallization of natural rubber composites by combined thermography and stress-strain measurements</atitle><jtitle>Polymer testing</jtitle><date>2018-04</date><risdate>2018</risdate><volume>66</volume><spage>87</spage><epage>93</epage><pages>87-93</pages><issn>0142-9418</issn><eissn>1873-2348</eissn><abstract>Strain induced crystallization is essential to the physicochemical properties of polymer materials, but is difficult to investigate, as it usually requires X-ray sources in combination with stretching machines. We improve and validate a recently developed method which allows the calculation of the crystallinity index using easily available thermography and stress-strain data. For natural rubber, the method is shown to be reproducible and delivers results quantitatively comparable to spectroscopic methods such as wide angle X-ray scattering. The incorporation of different amounts of carbon black is shown to increase the level of crystallization and to change the shape of the strain-crystallization curves. Additionally, crystallinity during partial retraction is investigated and reveals that crystallization characteristics change at sufficiently high strain. •Strain Induced Crystallization (SIC) is quantified using stress strain data and thermography.•Results from scattering for natural rubber are reproduced.•The method is reproducible and checked for consistency with non-crystallizing polymer.•Carbon black filler shifts on and offset to lower strains.•Incomplete stretching cycles exhibit reduced hysteresis, possibly due to less supercooling.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymertesting.2017.12.021</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9418
ispartof Polymer testing, 2018-04, Vol.66, p.87-93
issn 0142-9418
1873-2348
language eng
recordid cdi_proquest_journals_2063744858
source Elsevier
subjects Carbon black
Crystal structure
Crystallinity
Crystallization
Filler reinforcement
Natural rubber
Strain
Strain induced crystallization
Stress-strain curves
Stress-strain relationships
Thermography
X ray sources
X-ray scattering
title Determining strain-induced crystallization of natural rubber composites by combined thermography and stress-strain measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T04%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determining%20strain-induced%20crystallization%20of%20natural%20rubber%20composites%20by%20combined%20thermography%20and%20stress-strain%20measurements&rft.jtitle=Polymer%20testing&rft.au=Plagge,%20J.&rft.date=2018-04&rft.volume=66&rft.spage=87&rft.epage=93&rft.pages=87-93&rft.issn=0142-9418&rft.eissn=1873-2348&rft_id=info:doi/10.1016/j.polymertesting.2017.12.021&rft_dat=%3Cproquest_cross%3E2063744858%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-7de3752d934b1ad7d62dd1e920eef2540f92ffc6c5e4d62144f6e6aa032c27a73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2063744858&rft_id=info:pmid/&rfr_iscdi=true