Loading…
A Thin-Film Platform for Chemical Gas Sensors
In the study, a technique for formation of planar microheaters that make it possible to heat an active zone to a temperature higher than 500°С is proposed and successfully implemented. The developed heating elements are distinguished by low power consumption, short response time, and extremely high...
Saved in:
Published in: | Russian microelectronics 2018, Vol.47 (4), p.226-233 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the study, a technique for formation of planar microheaters that make it possible to heat an active zone to a temperature higher than 500°С is proposed and successfully implemented. The developed heating elements are distinguished by low power consumption, short response time, and extremely high resistance to impact loads. The synthetic approaches used in the work (anodic oxidation, photolithography, and magnetron sputtering) feature manufacturability and scaling simplicity. This makes planar heating elements a promising platform based on which semiconductor and thermocatalytic sensors of toxic and explosive gases may be created. |
---|---|
ISSN: | 1063-7397 1608-3415 |
DOI: | 10.1134/S1063739718040078 |