Loading…

CFDEM modelling of particle heating and acceleration in cold spraying

Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of...

Full description

Saved in:
Bibliographic Details
Published in:International journal of refractory metals & hard materials 2018-06, Vol.73, p.192-198
Main Authors: Leitz, K.-H., O'Sullivan, M., Plankensteiner, A., Lichtenegger, T., Pirker, S., Kestler, H., Sigl, L.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263
cites cdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263
container_end_page 198
container_issue
container_start_page 192
container_title International journal of refractory metals & hard materials
container_volume 73
creator Leitz, K.-H.
O'Sullivan, M.
Plankensteiner, A.
Lichtenegger, T.
Pirker, S.
Kestler, H.
Sigl, L.S.
description Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying. •Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling.
doi_str_mv 10.1016/j.ijrmhm.2018.02.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065061377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436817307746</els_id><sourcerecordid>2065061377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Bz62TpE3aiyDrrgorXvQcsknqprRNTbrC_nuz1LOngcd7b2Y-hG4J5AQIv29z14Z-3-cUSJUDzQHYGVpQSljGaiLO0QIoZ1nBeHWJrmJsAYDXnCzQerV5Wr_h3hvbdW74wr7BowqT053Fe6umk6YGg5XWtrMhCX7AbsDadwbHMahjclyji0Z10d78zSX63Kw_Vi_Z9v35dfW4zTRjxZRp0-i6oKWpG2UKI4Aywwnlza7iSbMlaAFGVKTk6V5el6yAXSmM1g0nVfpgie7m3jH474ONk2z9IQxppaTAS-CECZFcxezSwccYbCPH4HoVjpKAPAGTrZyByRMwCVQmYCn2MMds-uDH2SCjdnbQ1rhg9SSNd_8X_AIeBnSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065061377</pqid></control><display><type>article</type><title>CFDEM modelling of particle heating and acceleration in cold spraying</title><source>ScienceDirect Freedom Collection</source><creator>Leitz, K.-H. ; O'Sullivan, M. ; Plankensteiner, A. ; Lichtenegger, T. ; Pirker, S. ; Kestler, H. ; Sigl, L.S.</creator><creatorcontrib>Leitz, K.-H. ; O'Sullivan, M. ; Plankensteiner, A. ; Lichtenegger, T. ; Pirker, S. ; Kestler, H. ; Sigl, L.S.</creatorcontrib><description>Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying. •Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2018.02.003</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Acceleration ; CFDEMcoupling ; Cohesion ; Cold ; Cold spraying ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Discrete element method ; Finite volume method ; Fluid dynamics ; Gas flow ; Gas pressure ; Heating ; LIGGGHTS ; Mathematical models ; Nozzles ; OpenFOAM ; Particle acceleration ; Particle accelerators ; Particle heating ; Plasma spraying ; Plastic deformation ; Process parameters ; Refractory metals ; Substrates</subject><ispartof>International journal of refractory metals &amp; hard materials, 2018-06, Vol.73, p.192-198</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</citedby><cites>FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Leitz, K.-H.</creatorcontrib><creatorcontrib>O'Sullivan, M.</creatorcontrib><creatorcontrib>Plankensteiner, A.</creatorcontrib><creatorcontrib>Lichtenegger, T.</creatorcontrib><creatorcontrib>Pirker, S.</creatorcontrib><creatorcontrib>Kestler, H.</creatorcontrib><creatorcontrib>Sigl, L.S.</creatorcontrib><title>CFDEM modelling of particle heating and acceleration in cold spraying</title><title>International journal of refractory metals &amp; hard materials</title><description>Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying. •Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling.</description><subject>Acceleration</subject><subject>CFDEMcoupling</subject><subject>Cohesion</subject><subject>Cold</subject><subject>Cold spraying</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Discrete element method</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Gas flow</subject><subject>Gas pressure</subject><subject>Heating</subject><subject>LIGGGHTS</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>OpenFOAM</subject><subject>Particle acceleration</subject><subject>Particle accelerators</subject><subject>Particle heating</subject><subject>Plasma spraying</subject><subject>Plastic deformation</subject><subject>Process parameters</subject><subject>Refractory metals</subject><subject>Substrates</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Bz62TpE3aiyDrrgorXvQcsknqprRNTbrC_nuz1LOngcd7b2Y-hG4J5AQIv29z14Z-3-cUSJUDzQHYGVpQSljGaiLO0QIoZ1nBeHWJrmJsAYDXnCzQerV5Wr_h3hvbdW74wr7BowqT053Fe6umk6YGg5XWtrMhCX7AbsDadwbHMahjclyji0Z10d78zSX63Kw_Vi_Z9v35dfW4zTRjxZRp0-i6oKWpG2UKI4Aywwnlza7iSbMlaAFGVKTk6V5el6yAXSmM1g0nVfpgie7m3jH474ONk2z9IQxppaTAS-CECZFcxezSwccYbCPH4HoVjpKAPAGTrZyByRMwCVQmYCn2MMds-uDH2SCjdnbQ1rhg9SSNd_8X_AIeBnSc</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Leitz, K.-H.</creator><creator>O'Sullivan, M.</creator><creator>Plankensteiner, A.</creator><creator>Lichtenegger, T.</creator><creator>Pirker, S.</creator><creator>Kestler, H.</creator><creator>Sigl, L.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201806</creationdate><title>CFDEM modelling of particle heating and acceleration in cold spraying</title><author>Leitz, K.-H. ; O'Sullivan, M. ; Plankensteiner, A. ; Lichtenegger, T. ; Pirker, S. ; Kestler, H. ; Sigl, L.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>CFDEMcoupling</topic><topic>Cohesion</topic><topic>Cold</topic><topic>Cold spraying</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Discrete element method</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Gas flow</topic><topic>Gas pressure</topic><topic>Heating</topic><topic>LIGGGHTS</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>OpenFOAM</topic><topic>Particle acceleration</topic><topic>Particle accelerators</topic><topic>Particle heating</topic><topic>Plasma spraying</topic><topic>Plastic deformation</topic><topic>Process parameters</topic><topic>Refractory metals</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitz, K.-H.</creatorcontrib><creatorcontrib>O'Sullivan, M.</creatorcontrib><creatorcontrib>Plankensteiner, A.</creatorcontrib><creatorcontrib>Lichtenegger, T.</creatorcontrib><creatorcontrib>Pirker, S.</creatorcontrib><creatorcontrib>Kestler, H.</creatorcontrib><creatorcontrib>Sigl, L.S.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals &amp; hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitz, K.-H.</au><au>O'Sullivan, M.</au><au>Plankensteiner, A.</au><au>Lichtenegger, T.</au><au>Pirker, S.</au><au>Kestler, H.</au><au>Sigl, L.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFDEM modelling of particle heating and acceleration in cold spraying</atitle><jtitle>International journal of refractory metals &amp; hard materials</jtitle><date>2018-06</date><risdate>2018</risdate><volume>73</volume><spage>192</spage><epage>198</epage><pages>192-198</pages><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying. •Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2018.02.003</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-4368
ispartof International journal of refractory metals & hard materials, 2018-06, Vol.73, p.192-198
issn 0263-4368
2213-3917
language eng
recordid cdi_proquest_journals_2065061377
source ScienceDirect Freedom Collection
subjects Acceleration
CFDEMcoupling
Cohesion
Cold
Cold spraying
Computational fluid dynamics
Computational physics
Computer simulation
Discrete element method
Finite volume method
Fluid dynamics
Gas flow
Gas pressure
Heating
LIGGGHTS
Mathematical models
Nozzles
OpenFOAM
Particle acceleration
Particle accelerators
Particle heating
Plasma spraying
Plastic deformation
Process parameters
Refractory metals
Substrates
title CFDEM modelling of particle heating and acceleration in cold spraying
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFDEM%20modelling%20of%20particle%20heating%20and%20acceleration%20in%20cold%20spraying&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Leitz,%20K.-H.&rft.date=2018-06&rft.volume=73&rft.spage=192&rft.epage=198&rft.pages=192-198&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2018.02.003&rft_dat=%3Cproquest_cross%3E2065061377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2065061377&rft_id=info:pmid/&rfr_iscdi=true