Loading…
CFDEM modelling of particle heating and acceleration in cold spraying
Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of...
Saved in:
Published in: | International journal of refractory metals & hard materials 2018-06, Vol.73, p.192-198 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263 |
container_end_page | 198 |
container_issue | |
container_start_page | 192 |
container_title | International journal of refractory metals & hard materials |
container_volume | 73 |
creator | Leitz, K.-H. O'Sullivan, M. Plankensteiner, A. Lichtenegger, T. Pirker, S. Kestler, H. Sigl, L.S. |
description | Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying.
•Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling. |
doi_str_mv | 10.1016/j.ijrmhm.2018.02.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2065061377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263436817307746</els_id><sourcerecordid>2065061377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-Aw8Bz62TpE3aiyDrrgorXvQcsknqprRNTbrC_nuz1LOngcd7b2Y-hG4J5AQIv29z14Z-3-cUSJUDzQHYGVpQSljGaiLO0QIoZ1nBeHWJrmJsAYDXnCzQerV5Wr_h3hvbdW74wr7BowqT053Fe6umk6YGg5XWtrMhCX7AbsDadwbHMahjclyji0Z10d78zSX63Kw_Vi_Z9v35dfW4zTRjxZRp0-i6oKWpG2UKI4Aywwnlza7iSbMlaAFGVKTk6V5el6yAXSmM1g0nVfpgie7m3jH474ONk2z9IQxppaTAS-CECZFcxezSwccYbCPH4HoVjpKAPAGTrZyByRMwCVQmYCn2MMds-uDH2SCjdnbQ1rhg9SSNd_8X_AIeBnSc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2065061377</pqid></control><display><type>article</type><title>CFDEM modelling of particle heating and acceleration in cold spraying</title><source>ScienceDirect Freedom Collection</source><creator>Leitz, K.-H. ; O'Sullivan, M. ; Plankensteiner, A. ; Lichtenegger, T. ; Pirker, S. ; Kestler, H. ; Sigl, L.S.</creator><creatorcontrib>Leitz, K.-H. ; O'Sullivan, M. ; Plankensteiner, A. ; Lichtenegger, T. ; Pirker, S. ; Kestler, H. ; Sigl, L.S.</creatorcontrib><description>Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying.
•Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling.</description><identifier>ISSN: 0263-4368</identifier><identifier>EISSN: 2213-3917</identifier><identifier>DOI: 10.1016/j.ijrmhm.2018.02.003</identifier><language>eng</language><publisher>Shrewsbury: Elsevier Ltd</publisher><subject>Acceleration ; CFDEMcoupling ; Cohesion ; Cold ; Cold spraying ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Discrete element method ; Finite volume method ; Fluid dynamics ; Gas flow ; Gas pressure ; Heating ; LIGGGHTS ; Mathematical models ; Nozzles ; OpenFOAM ; Particle acceleration ; Particle accelerators ; Particle heating ; Plasma spraying ; Plastic deformation ; Process parameters ; Refractory metals ; Substrates</subject><ispartof>International journal of refractory metals & hard materials, 2018-06, Vol.73, p.192-198</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</citedby><cites>FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Leitz, K.-H.</creatorcontrib><creatorcontrib>O'Sullivan, M.</creatorcontrib><creatorcontrib>Plankensteiner, A.</creatorcontrib><creatorcontrib>Lichtenegger, T.</creatorcontrib><creatorcontrib>Pirker, S.</creatorcontrib><creatorcontrib>Kestler, H.</creatorcontrib><creatorcontrib>Sigl, L.S.</creatorcontrib><title>CFDEM modelling of particle heating and acceleration in cold spraying</title><title>International journal of refractory metals & hard materials</title><description>Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying.
•Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling.</description><subject>Acceleration</subject><subject>CFDEMcoupling</subject><subject>Cohesion</subject><subject>Cold</subject><subject>Cold spraying</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Discrete element method</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>Gas flow</subject><subject>Gas pressure</subject><subject>Heating</subject><subject>LIGGGHTS</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>OpenFOAM</subject><subject>Particle acceleration</subject><subject>Particle accelerators</subject><subject>Particle heating</subject><subject>Plasma spraying</subject><subject>Plastic deformation</subject><subject>Process parameters</subject><subject>Refractory metals</subject><subject>Substrates</subject><issn>0263-4368</issn><issn>2213-3917</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMouK7-Aw8Bz62TpE3aiyDrrgorXvQcsknqprRNTbrC_nuz1LOngcd7b2Y-hG4J5AQIv29z14Z-3-cUSJUDzQHYGVpQSljGaiLO0QIoZ1nBeHWJrmJsAYDXnCzQerV5Wr_h3hvbdW74wr7BowqT053Fe6umk6YGg5XWtrMhCX7AbsDadwbHMahjclyji0Z10d78zSX63Kw_Vi_Z9v35dfW4zTRjxZRp0-i6oKWpG2UKI4Aywwnlza7iSbMlaAFGVKTk6V5el6yAXSmM1g0nVfpgie7m3jH474ONk2z9IQxppaTAS-CECZFcxezSwccYbCPH4HoVjpKAPAGTrZyByRMwCVQmYCn2MMds-uDH2SCjdnbQ1rhg9SSNd_8X_AIeBnSc</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Leitz, K.-H.</creator><creator>O'Sullivan, M.</creator><creator>Plankensteiner, A.</creator><creator>Lichtenegger, T.</creator><creator>Pirker, S.</creator><creator>Kestler, H.</creator><creator>Sigl, L.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201806</creationdate><title>CFDEM modelling of particle heating and acceleration in cold spraying</title><author>Leitz, K.-H. ; O'Sullivan, M. ; Plankensteiner, A. ; Lichtenegger, T. ; Pirker, S. ; Kestler, H. ; Sigl, L.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acceleration</topic><topic>CFDEMcoupling</topic><topic>Cohesion</topic><topic>Cold</topic><topic>Cold spraying</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Discrete element method</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>Gas flow</topic><topic>Gas pressure</topic><topic>Heating</topic><topic>LIGGGHTS</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>OpenFOAM</topic><topic>Particle acceleration</topic><topic>Particle accelerators</topic><topic>Particle heating</topic><topic>Plasma spraying</topic><topic>Plastic deformation</topic><topic>Process parameters</topic><topic>Refractory metals</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leitz, K.-H.</creatorcontrib><creatorcontrib>O'Sullivan, M.</creatorcontrib><creatorcontrib>Plankensteiner, A.</creatorcontrib><creatorcontrib>Lichtenegger, T.</creatorcontrib><creatorcontrib>Pirker, S.</creatorcontrib><creatorcontrib>Kestler, H.</creatorcontrib><creatorcontrib>Sigl, L.S.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of refractory metals & hard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leitz, K.-H.</au><au>O'Sullivan, M.</au><au>Plankensteiner, A.</au><au>Lichtenegger, T.</au><au>Pirker, S.</au><au>Kestler, H.</au><au>Sigl, L.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CFDEM modelling of particle heating and acceleration in cold spraying</atitle><jtitle>International journal of refractory metals & hard materials</jtitle><date>2018-06</date><risdate>2018</risdate><volume>73</volume><spage>192</spage><epage>198</epage><pages>192-198</pages><issn>0263-4368</issn><eissn>2213-3917</eissn><abstract>Cold spraying is a promising approach for the processing of refractory metals. A powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities that are sufficient to obtain cohesion of the particles to a substrate due to plastic deformation. The cohesion behavior of the particles is mainly determined by their velocity and temperature. These are controlled by the pressure and temperature of the gas at the nozzle entrance. A correlation of the process parameters gas pressure and temperature with the particle velocity and temperature is possible based upon numerical simulations. In this contribution a CFDEM simulation model for particle heating and acceleration based on OpenFOAM and LIGGGHTS is presented. CFDEMcoupling combines computational fluid dynamic (CFD) calculation of the gas flow based on the finite volume method with a description of the particles based on the discrete element method (DEM). The predictions of the simulation model are verified based on an analytical description of the cold spray nozzle and validated by experimentally measured particle velocities. Based on this experimental validation the drag model of Koch and Hill appears best suited for a CFDEM modelling of cold spraying.
•Combination of computational fluid dynamics and discrete element modelling for the simulation of cold spraying.•Simulation of particle heating and acceleration in cold spraying.•Drag model of Koch and Hill identified to be well suited for cold spray modelling.</abstract><cop>Shrewsbury</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijrmhm.2018.02.003</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-4368 |
ispartof | International journal of refractory metals & hard materials, 2018-06, Vol.73, p.192-198 |
issn | 0263-4368 2213-3917 |
language | eng |
recordid | cdi_proquest_journals_2065061377 |
source | ScienceDirect Freedom Collection |
subjects | Acceleration CFDEMcoupling Cohesion Cold Cold spraying Computational fluid dynamics Computational physics Computer simulation Discrete element method Finite volume method Fluid dynamics Gas flow Gas pressure Heating LIGGGHTS Mathematical models Nozzles OpenFOAM Particle acceleration Particle accelerators Particle heating Plasma spraying Plastic deformation Process parameters Refractory metals Substrates |
title | CFDEM modelling of particle heating and acceleration in cold spraying |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CFDEM%20modelling%20of%20particle%20heating%20and%20acceleration%20in%20cold%20spraying&rft.jtitle=International%20journal%20of%20refractory%20metals%20&%20hard%20materials&rft.au=Leitz,%20K.-H.&rft.date=2018-06&rft.volume=73&rft.spage=192&rft.epage=198&rft.pages=192-198&rft.issn=0263-4368&rft.eissn=2213-3917&rft_id=info:doi/10.1016/j.ijrmhm.2018.02.003&rft_dat=%3Cproquest_cross%3E2065061377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-cdfc9425d9fad4d7023d6126fb86d9fe50c70d78156026695340b57dccf618263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2065061377&rft_id=info:pmid/&rfr_iscdi=true |