Loading…
Renewal-type limit theorem for the Gauss map and continued fractions
In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The exist...
Saved in:
Published in: | Ergodic theory and dynamical systems 2008-04, Vol.28 (2), p.643-655 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c354t-ac7fc25c7efd17388ef3adec2cfea365d57c9bf44b0f7dd5db01ddeb8d7fce1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c354t-ac7fc25c7efd17388ef3adec2cfea365d57c9bf44b0f7dd5db01ddeb8d7fce1a3 |
container_end_page | 655 |
container_issue | 2 |
container_start_page | 643 |
container_title | Ergodic theory and dynamical systems |
container_volume | 28 |
creator | SINAI, YAKOV G. ULCIGRAI, CORINNA |
description | In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The existence of the limiting distribution uses mixing of a special flow over the natural extension of the Gauss map. |
doi_str_mv | 10.1017/S0143385707000466 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_206515095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0143385707000466</cupid><sourcerecordid>1510838731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-ac7fc25c7efd17388ef3adec2cfea365d57c9bf44b0f7dd5db01ddeb8d7fce1a3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANws7gG7tuPkiFoIoCL-z5ZjryGlSYrtCPr2JGoFB8RpV5pvdlaD0DElp5RQefZEKGcsE5JIQghP0x00ojzNE86p3EWjQU4GfR8dhLDoGUalGKHZIzTwqZdJXK8AL6u6iji-Qeuhxq71w44L3YWAa73CurHYtE2smg4sdl6bWLVNOER7Ti8DHG3nGL1cXjxPr5L5XXE9PZ8nhgkeE22kMxNhJDhLJcsycExbMBPjQLNUWCFNXjrOS-KktcKWhFoLZWZ7H1DNxuhkc3fl248OQlSLtvNNH6kmJBVUkFz0EN1AxrcheHBq5ata-7WiRA1dqT9d9Z5k46lChK8fg_bvKpVMCpUWD2rG89v7S1Kom55n2wxdl76yr_D7yf8p3y-1e8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206515095</pqid></control><display><type>article</type><title>Renewal-type limit theorem for the Gauss map and continued fractions</title><source>Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list)</source><creator>SINAI, YAKOV G. ; ULCIGRAI, CORINNA</creator><creatorcontrib>SINAI, YAKOV G. ; ULCIGRAI, CORINNA</creatorcontrib><description>In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The existence of the limiting distribution uses mixing of a special flow over the natural extension of the Gauss map.</description><identifier>ISSN: 0143-3857</identifier><identifier>EISSN: 1469-4417</identifier><identifier>DOI: 10.1017/S0143385707000466</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Ergodic theory and dynamical systems, 2008-04, Vol.28 (2), p.643-655</ispartof><rights>Copyright © Cambridge University Press 2008</rights><rights>Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-ac7fc25c7efd17388ef3adec2cfea365d57c9bf44b0f7dd5db01ddeb8d7fce1a3</citedby><cites>FETCH-LOGICAL-c354t-ac7fc25c7efd17388ef3adec2cfea365d57c9bf44b0f7dd5db01ddeb8d7fce1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0143385707000466/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,72730</link.rule.ids></links><search><creatorcontrib>SINAI, YAKOV G.</creatorcontrib><creatorcontrib>ULCIGRAI, CORINNA</creatorcontrib><title>Renewal-type limit theorem for the Gauss map and continued fractions</title><title>Ergodic theory and dynamical systems</title><addtitle>Ergod. Th. Dynam. Sys</addtitle><description>In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The existence of the limiting distribution uses mixing of a special flow over the natural extension of the Gauss map.</description><issn>0143-3857</issn><issn>1469-4417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANws7gG7tuPkiFoIoCL-z5ZjryGlSYrtCPr2JGoFB8RpV5pvdlaD0DElp5RQefZEKGcsE5JIQghP0x00ojzNE86p3EWjQU4GfR8dhLDoGUalGKHZIzTwqZdJXK8AL6u6iji-Qeuhxq71w44L3YWAa73CurHYtE2smg4sdl6bWLVNOER7Ti8DHG3nGL1cXjxPr5L5XXE9PZ8nhgkeE22kMxNhJDhLJcsycExbMBPjQLNUWCFNXjrOS-KktcKWhFoLZWZ7H1DNxuhkc3fl248OQlSLtvNNH6kmJBVUkFz0EN1AxrcheHBq5ata-7WiRA1dqT9d9Z5k46lChK8fg_bvKpVMCpUWD2rG89v7S1Kom55n2wxdl76yr_D7yf8p3y-1e8U</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>SINAI, YAKOV G.</creator><creator>ULCIGRAI, CORINNA</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20080401</creationdate><title>Renewal-type limit theorem for the Gauss map and continued fractions</title><author>SINAI, YAKOV G. ; ULCIGRAI, CORINNA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-ac7fc25c7efd17388ef3adec2cfea365d57c9bf44b0f7dd5db01ddeb8d7fce1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SINAI, YAKOV G.</creatorcontrib><creatorcontrib>ULCIGRAI, CORINNA</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Ergodic theory and dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SINAI, YAKOV G.</au><au>ULCIGRAI, CORINNA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renewal-type limit theorem for the Gauss map and continued fractions</atitle><jtitle>Ergodic theory and dynamical systems</jtitle><addtitle>Ergod. Th. Dynam. Sys</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>28</volume><issue>2</issue><spage>643</spage><epage>655</epage><pages>643-655</pages><issn>0143-3857</issn><eissn>1469-4417</eissn><abstract>In this paper we prove a renewal-type limit theorem. Given $\alpha \in (0,1)\backslash \mathbb {Q}$ and R>0, let qnR be the first denominator of the convergents of α which exceeds R. The main result in the paper is that the ratio qnR/R has a limiting distribution as R tends to infinity. The existence of the limiting distribution uses mixing of a special flow over the natural extension of the Gauss map.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0143385707000466</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-3857 |
ispartof | Ergodic theory and dynamical systems, 2008-04, Vol.28 (2), p.643-655 |
issn | 0143-3857 1469-4417 |
language | eng |
recordid | cdi_proquest_journals_206515095 |
source | Cambridge University Press:Jisc Collections:Cambridge University Press Read and Publish Agreement 2021-24 (Reading list) |
title | Renewal-type limit theorem for the Gauss map and continued fractions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renewal-type%20limit%20theorem%20for%20the%20Gauss%20map%20and%20continued%20fractions&rft.jtitle=Ergodic%20theory%20and%20dynamical%20systems&rft.au=SINAI,%20YAKOV%20G.&rft.date=2008-04-01&rft.volume=28&rft.issue=2&rft.spage=643&rft.epage=655&rft.pages=643-655&rft.issn=0143-3857&rft.eissn=1469-4417&rft_id=info:doi/10.1017/S0143385707000466&rft_dat=%3Cproquest_cross%3E1510838731%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-ac7fc25c7efd17388ef3adec2cfea365d57c9bf44b0f7dd5db01ddeb8d7fce1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=206515095&rft_id=info:pmid/&rft_cupid=10_1017_S0143385707000466&rfr_iscdi=true |