Loading…

A case-based approach using inductive indexing for corporate bond rating

Case-based reasoning (CBR) is a problem solving technique by re-using past cases and experiences to find a solution to problems. The central tasks involved in CBR methods are to identify the current problem situation, find a past case similar to the new one, use that case to suggest a solution to th...

Full description

Saved in:
Bibliographic Details
Published in:Decision Support Systems 2001-11, Vol.32 (1), p.41-52
Main Authors: Shin, Kyung-shik, Han, Ingoo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Case-based reasoning (CBR) is a problem solving technique by re-using past cases and experiences to find a solution to problems. The central tasks involved in CBR methods are to identify the current problem situation, find a past case similar to the new one, use that case to suggest a solution to the current problem, evaluate the proposed solution, and update the system by learning from this experience. In doing tasks, one of the critical issues in building a useful CBR system lies in the application of general domain knowledge to the indexing of cases, which may support the retrieval of relevant cases to the problem. This paper investigates the effectiveness of inductive learning approach to case indexing process for business classification tasks. We suggest this approach as a unifying framework to combine general domain knowledge and case-specific knowledge. Our particular interest involves optimal or near optimal decision trees that represent an optimal combination level between the two knowledge types. The proposed approach is demonstrated by applications to corporate bond rating.
ISSN:0167-9236
1873-5797
DOI:10.1016/S0167-9236(01)00099-9