Loading…

Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts

Use of biomass in combustion and subsequent CO2 capture ideally lead to negative CO2 emissions. New techniques for biomass conversion are Chemical Looping Combustion of Biomass (Bio-CLC) and Oxygen Carrier Aided Combustion (OCAC). In both techniques, the ash-forming elements of biomass, mainly consi...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2018-04, Vol.148, p.930-940
Main Authors: Zevenhoven, Maria, Sevonius, Christoffer, Salminen, Patrik, Lindberg, Daniel, Brink, Anders, Yrjas, Patrik, Hupa, Leena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-74677836ad5f1b88b6772fc33f13621dec11e412a02fb6da187c7375efe088ff3
cites cdi_FETCH-LOGICAL-c371t-74677836ad5f1b88b6772fc33f13621dec11e412a02fb6da187c7375efe088ff3
container_end_page 940
container_issue
container_start_page 930
container_title Energy (Oxford)
container_volume 148
creator Zevenhoven, Maria
Sevonius, Christoffer
Salminen, Patrik
Lindberg, Daniel
Brink, Anders
Yrjas, Patrik
Hupa, Leena
description Use of biomass in combustion and subsequent CO2 capture ideally lead to negative CO2 emissions. New techniques for biomass conversion are Chemical Looping Combustion of Biomass (Bio-CLC) and Oxygen Carrier Aided Combustion (OCAC). In both techniques, the ash-forming elements of biomass, mainly consisting of potassium, calcium, sulfur, phosphorus, and chlorine, may interact with the oxygen carrier bed material, causing agglomeration and defluidization, and thus inhibit the oxidation/reduction reactions. The detailed mechanisms behind this effect are not properly understood. Ilmenite, an iron-titanium mineral, is used as an oxygen carrier in both CLC and OCAC. In this study, the interactions between ilmenite and potassium compounds, typical for biomass ashes, were studied. Mixtures of ilmenite with different potassium compounds were thermally treated in a crucible in an oxidizing environment at 850 and 950 °C. These conditions are relevant for OCAC and in the parts of CLC where oxidation of the oxygen carrier takes place. The interactions between potassium compounds, KCl, KH2PO4, K2CO3 and K2SO4 and the carrier material, were studied using DTA-TGA, XRD, and SEM-EDS. Thermodynamic equilibrium calculations were carried out to verify the reactions. Results from the crucible tests were used to explain the behavior of ilmenite in the presence of potassium salts in a lab-scale fluidized bed conversion. The bed agglomeration mechanisms depend on the potassium salt: KCl glued the particles together, whereas K2CO3 reacted with the bed particles. KH2PO4 reacted with the bed material and glued the particles together. K2SO4 remained non-reactive and did not influence the agglomeration of ilmenite bed particles. •Ash-forming elements of biomass, interact with ilmenite, an oxygen carrier.•The bed agglomeration mechanisms depend on the ash compound present.•KCl and KH2PO4 glue the particles together, and KH2PO4 may react with ilmenite.•K2CO3 reacts with the bed particles.•K2SO4 remains non-reactive and does not influence the agglomeration of ilmenite.
doi_str_mv 10.1016/j.energy.2018.01.184
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2066203354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544218302123</els_id><sourcerecordid>2066203354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-74677836ad5f1b88b6772fc33f13621dec11e412a02fb6da187c7375efe088ff3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAxaWWCfYceK4GyRUfqVKbGCJLMcZt47auNgOtKy4AzfkJLgqa1aj0cx7M-9D6JySnBLKL7scevDzbV4QKnJCcyrKAzSiomYZr0V1iEaEcZJVZVkco5MQOkJIJSaTEXq9AbMcbGs_VbSux87guADsNts59Fgr7y14bJcr6G0E_PP1jWeqcV5F57cYNmvwNs1iwB82LvDaRRWCHVY4qGUMp-jIqGWAs786Ri93t8_Th2z2dP84vZ5lmtU0ZnXJ61owrtrK0EaIJrWF0YwZynhBW9CUQkkLRQrT8FalYLpmdQUGiBDGsDG62PuuvXsbIETZucH36aQsCOcFYawq01a539LeheDByHV6XvmtpETuQMpO7kHKHUhJqEwgk-xqL4OU4D3hkEFb6DW01oOOsnX2f4NflFqAZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066203354</pqid></control><display><type>article</type><title>Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts</title><source>ScienceDirect Freedom Collection</source><creator>Zevenhoven, Maria ; Sevonius, Christoffer ; Salminen, Patrik ; Lindberg, Daniel ; Brink, Anders ; Yrjas, Patrik ; Hupa, Leena</creator><creatorcontrib>Zevenhoven, Maria ; Sevonius, Christoffer ; Salminen, Patrik ; Lindberg, Daniel ; Brink, Anders ; Yrjas, Patrik ; Hupa, Leena</creatorcontrib><description>Use of biomass in combustion and subsequent CO2 capture ideally lead to negative CO2 emissions. New techniques for biomass conversion are Chemical Looping Combustion of Biomass (Bio-CLC) and Oxygen Carrier Aided Combustion (OCAC). In both techniques, the ash-forming elements of biomass, mainly consisting of potassium, calcium, sulfur, phosphorus, and chlorine, may interact with the oxygen carrier bed material, causing agglomeration and defluidization, and thus inhibit the oxidation/reduction reactions. The detailed mechanisms behind this effect are not properly understood. Ilmenite, an iron-titanium mineral, is used as an oxygen carrier in both CLC and OCAC. In this study, the interactions between ilmenite and potassium compounds, typical for biomass ashes, were studied. Mixtures of ilmenite with different potassium compounds were thermally treated in a crucible in an oxidizing environment at 850 and 950 °C. These conditions are relevant for OCAC and in the parts of CLC where oxidation of the oxygen carrier takes place. The interactions between potassium compounds, KCl, KH2PO4, K2CO3 and K2SO4 and the carrier material, were studied using DTA-TGA, XRD, and SEM-EDS. Thermodynamic equilibrium calculations were carried out to verify the reactions. Results from the crucible tests were used to explain the behavior of ilmenite in the presence of potassium salts in a lab-scale fluidized bed conversion. The bed agglomeration mechanisms depend on the potassium salt: KCl glued the particles together, whereas K2CO3 reacted with the bed particles. KH2PO4 reacted with the bed material and glued the particles together. K2SO4 remained non-reactive and did not influence the agglomeration of ilmenite bed particles. •Ash-forming elements of biomass, interact with ilmenite, an oxygen carrier.•The bed agglomeration mechanisms depend on the ash compound present.•KCl and KH2PO4 glue the particles together, and KH2PO4 may react with ilmenite.•K2CO3 reacts with the bed particles.•K2SO4 remains non-reactive and does not influence the agglomeration of ilmenite.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2018.01.184</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Agglomeration ; Ash ; Ash interaction ; Ashes ; Biomass ; Biomass burning ; Calcium ; Carbon dioxide ; Carbon dioxide emissions ; Carbon sequestration ; Chemical looping combustion (CLC) ; Chemical reduction ; Chlorine ; Combustion ; Conversion ; Crucibles ; Defluidization ; Fluidized bed combustion ; Fluidized beds ; Fuels ; Ilmenite ; Iron ; Organic chemistry ; Oxidation ; Oxygen ; Oxygen carrier aided combustion (OCAC) ; Particulates ; Phosphorus ; Potassium ; Potassium carbonate ; Potassium chloride ; Potassium compounds ; Potassium phosphate ; Potassium phosphates ; Potassium salts ; Potassium sulfate ; Redox reactions ; Salts ; Sulfur ; Thermodynamic equilibrium ; Wood</subject><ispartof>Energy (Oxford), 2018-04, Vol.148, p.930-940</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-74677836ad5f1b88b6772fc33f13621dec11e412a02fb6da187c7375efe088ff3</citedby><cites>FETCH-LOGICAL-c371t-74677836ad5f1b88b6772fc33f13621dec11e412a02fb6da187c7375efe088ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zevenhoven, Maria</creatorcontrib><creatorcontrib>Sevonius, Christoffer</creatorcontrib><creatorcontrib>Salminen, Patrik</creatorcontrib><creatorcontrib>Lindberg, Daniel</creatorcontrib><creatorcontrib>Brink, Anders</creatorcontrib><creatorcontrib>Yrjas, Patrik</creatorcontrib><creatorcontrib>Hupa, Leena</creatorcontrib><title>Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts</title><title>Energy (Oxford)</title><description>Use of biomass in combustion and subsequent CO2 capture ideally lead to negative CO2 emissions. New techniques for biomass conversion are Chemical Looping Combustion of Biomass (Bio-CLC) and Oxygen Carrier Aided Combustion (OCAC). In both techniques, the ash-forming elements of biomass, mainly consisting of potassium, calcium, sulfur, phosphorus, and chlorine, may interact with the oxygen carrier bed material, causing agglomeration and defluidization, and thus inhibit the oxidation/reduction reactions. The detailed mechanisms behind this effect are not properly understood. Ilmenite, an iron-titanium mineral, is used as an oxygen carrier in both CLC and OCAC. In this study, the interactions between ilmenite and potassium compounds, typical for biomass ashes, were studied. Mixtures of ilmenite with different potassium compounds were thermally treated in a crucible in an oxidizing environment at 850 and 950 °C. These conditions are relevant for OCAC and in the parts of CLC where oxidation of the oxygen carrier takes place. The interactions between potassium compounds, KCl, KH2PO4, K2CO3 and K2SO4 and the carrier material, were studied using DTA-TGA, XRD, and SEM-EDS. Thermodynamic equilibrium calculations were carried out to verify the reactions. Results from the crucible tests were used to explain the behavior of ilmenite in the presence of potassium salts in a lab-scale fluidized bed conversion. The bed agglomeration mechanisms depend on the potassium salt: KCl glued the particles together, whereas K2CO3 reacted with the bed particles. KH2PO4 reacted with the bed material and glued the particles together. K2SO4 remained non-reactive and did not influence the agglomeration of ilmenite bed particles. •Ash-forming elements of biomass, interact with ilmenite, an oxygen carrier.•The bed agglomeration mechanisms depend on the ash compound present.•KCl and KH2PO4 glue the particles together, and KH2PO4 may react with ilmenite.•K2CO3 reacts with the bed particles.•K2SO4 remains non-reactive and does not influence the agglomeration of ilmenite.</description><subject>Agglomeration</subject><subject>Ash</subject><subject>Ash interaction</subject><subject>Ashes</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Calcium</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon sequestration</subject><subject>Chemical looping combustion (CLC)</subject><subject>Chemical reduction</subject><subject>Chlorine</subject><subject>Combustion</subject><subject>Conversion</subject><subject>Crucibles</subject><subject>Defluidization</subject><subject>Fluidized bed combustion</subject><subject>Fluidized beds</subject><subject>Fuels</subject><subject>Ilmenite</subject><subject>Iron</subject><subject>Organic chemistry</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Oxygen carrier aided combustion (OCAC)</subject><subject>Particulates</subject><subject>Phosphorus</subject><subject>Potassium</subject><subject>Potassium carbonate</subject><subject>Potassium chloride</subject><subject>Potassium compounds</subject><subject>Potassium phosphate</subject><subject>Potassium phosphates</subject><subject>Potassium salts</subject><subject>Potassium sulfate</subject><subject>Redox reactions</subject><subject>Salts</subject><subject>Sulfur</subject><subject>Thermodynamic equilibrium</subject><subject>Wood</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAxaWWCfYceK4GyRUfqVKbGCJLMcZt47auNgOtKy4AzfkJLgqa1aj0cx7M-9D6JySnBLKL7scevDzbV4QKnJCcyrKAzSiomYZr0V1iEaEcZJVZVkco5MQOkJIJSaTEXq9AbMcbGs_VbSux87guADsNts59Fgr7y14bJcr6G0E_PP1jWeqcV5F57cYNmvwNs1iwB82LvDaRRWCHVY4qGUMp-jIqGWAs786Ri93t8_Th2z2dP84vZ5lmtU0ZnXJ61owrtrK0EaIJrWF0YwZynhBW9CUQkkLRQrT8FalYLpmdQUGiBDGsDG62PuuvXsbIETZucH36aQsCOcFYawq01a539LeheDByHV6XvmtpETuQMpO7kHKHUhJqEwgk-xqL4OU4D3hkEFb6DW01oOOsnX2f4NflFqAZA</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Zevenhoven, Maria</creator><creator>Sevonius, Christoffer</creator><creator>Salminen, Patrik</creator><creator>Lindberg, Daniel</creator><creator>Brink, Anders</creator><creator>Yrjas, Patrik</creator><creator>Hupa, Leena</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180401</creationdate><title>Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts</title><author>Zevenhoven, Maria ; Sevonius, Christoffer ; Salminen, Patrik ; Lindberg, Daniel ; Brink, Anders ; Yrjas, Patrik ; Hupa, Leena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-74677836ad5f1b88b6772fc33f13621dec11e412a02fb6da187c7375efe088ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agglomeration</topic><topic>Ash</topic><topic>Ash interaction</topic><topic>Ashes</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Calcium</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon sequestration</topic><topic>Chemical looping combustion (CLC)</topic><topic>Chemical reduction</topic><topic>Chlorine</topic><topic>Combustion</topic><topic>Conversion</topic><topic>Crucibles</topic><topic>Defluidization</topic><topic>Fluidized bed combustion</topic><topic>Fluidized beds</topic><topic>Fuels</topic><topic>Ilmenite</topic><topic>Iron</topic><topic>Organic chemistry</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Oxygen carrier aided combustion (OCAC)</topic><topic>Particulates</topic><topic>Phosphorus</topic><topic>Potassium</topic><topic>Potassium carbonate</topic><topic>Potassium chloride</topic><topic>Potassium compounds</topic><topic>Potassium phosphate</topic><topic>Potassium phosphates</topic><topic>Potassium salts</topic><topic>Potassium sulfate</topic><topic>Redox reactions</topic><topic>Salts</topic><topic>Sulfur</topic><topic>Thermodynamic equilibrium</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zevenhoven, Maria</creatorcontrib><creatorcontrib>Sevonius, Christoffer</creatorcontrib><creatorcontrib>Salminen, Patrik</creatorcontrib><creatorcontrib>Lindberg, Daniel</creatorcontrib><creatorcontrib>Brink, Anders</creatorcontrib><creatorcontrib>Yrjas, Patrik</creatorcontrib><creatorcontrib>Hupa, Leena</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zevenhoven, Maria</au><au>Sevonius, Christoffer</au><au>Salminen, Patrik</au><au>Lindberg, Daniel</au><au>Brink, Anders</au><au>Yrjas, Patrik</au><au>Hupa, Leena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts</atitle><jtitle>Energy (Oxford)</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>148</volume><spage>930</spage><epage>940</epage><pages>930-940</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>Use of biomass in combustion and subsequent CO2 capture ideally lead to negative CO2 emissions. New techniques for biomass conversion are Chemical Looping Combustion of Biomass (Bio-CLC) and Oxygen Carrier Aided Combustion (OCAC). In both techniques, the ash-forming elements of biomass, mainly consisting of potassium, calcium, sulfur, phosphorus, and chlorine, may interact with the oxygen carrier bed material, causing agglomeration and defluidization, and thus inhibit the oxidation/reduction reactions. The detailed mechanisms behind this effect are not properly understood. Ilmenite, an iron-titanium mineral, is used as an oxygen carrier in both CLC and OCAC. In this study, the interactions between ilmenite and potassium compounds, typical for biomass ashes, were studied. Mixtures of ilmenite with different potassium compounds were thermally treated in a crucible in an oxidizing environment at 850 and 950 °C. These conditions are relevant for OCAC and in the parts of CLC where oxidation of the oxygen carrier takes place. The interactions between potassium compounds, KCl, KH2PO4, K2CO3 and K2SO4 and the carrier material, were studied using DTA-TGA, XRD, and SEM-EDS. Thermodynamic equilibrium calculations were carried out to verify the reactions. Results from the crucible tests were used to explain the behavior of ilmenite in the presence of potassium salts in a lab-scale fluidized bed conversion. The bed agglomeration mechanisms depend on the potassium salt: KCl glued the particles together, whereas K2CO3 reacted with the bed particles. KH2PO4 reacted with the bed material and glued the particles together. K2SO4 remained non-reactive and did not influence the agglomeration of ilmenite bed particles. •Ash-forming elements of biomass, interact with ilmenite, an oxygen carrier.•The bed agglomeration mechanisms depend on the ash compound present.•KCl and KH2PO4 glue the particles together, and KH2PO4 may react with ilmenite.•K2CO3 reacts with the bed particles.•K2SO4 remains non-reactive and does not influence the agglomeration of ilmenite.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2018.01.184</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2018-04, Vol.148, p.930-940
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2066203354
source ScienceDirect Freedom Collection
subjects Agglomeration
Ash
Ash interaction
Ashes
Biomass
Biomass burning
Calcium
Carbon dioxide
Carbon dioxide emissions
Carbon sequestration
Chemical looping combustion (CLC)
Chemical reduction
Chlorine
Combustion
Conversion
Crucibles
Defluidization
Fluidized bed combustion
Fluidized beds
Fuels
Ilmenite
Iron
Organic chemistry
Oxidation
Oxygen
Oxygen carrier aided combustion (OCAC)
Particulates
Phosphorus
Potassium
Potassium carbonate
Potassium chloride
Potassium compounds
Potassium phosphate
Potassium phosphates
Potassium salts
Potassium sulfate
Redox reactions
Salts
Sulfur
Thermodynamic equilibrium
Wood
title Defluidization of the oxygen carrier ilmenite – Laboratory experiments with potassium salts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defluidization%20of%20the%20oxygen%20carrier%20ilmenite%20%E2%80%93%20Laboratory%20experiments%20with%20potassium%20salts&rft.jtitle=Energy%20(Oxford)&rft.au=Zevenhoven,%20Maria&rft.date=2018-04-01&rft.volume=148&rft.spage=930&rft.epage=940&rft.pages=930-940&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2018.01.184&rft_dat=%3Cproquest_cross%3E2066203354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-74677836ad5f1b88b6772fc33f13621dec11e412a02fb6da187c7375efe088ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2066203354&rft_id=info:pmid/&rfr_iscdi=true