Loading…
Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty
Summary The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel...
Saved in:
Published in: | International journal for numerical methods in engineering 2018-08, Vol.115 (6), p.756-770 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3 |
container_end_page | 770 |
container_issue | 6 |
container_start_page | 756 |
container_title | International journal for numerical methods in engineering |
container_volume | 115 |
creator | Wang, Chong Matthies, Hermann G. |
description | Summary
The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements. |
doi_str_mv | 10.1002/nme.5824 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2067085713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067085713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SPPJarKQyplA-vIccaNq8QJtluUDeIT-Ea-BJeyZTW6c8_MlS5Cl5TMKCHsxnQwS3IWH6EJJUUWEUayYzQJVhElRU5P0ZlzG0IoTQifoI9Vv4MWa-PB7kSLfQO9Hb8_vyrhoMaDsKKD4GFdg_FaaSm87g0Oy6avseotBrPWBsBqs8YNCI-9FcapcONG56Fz-F37BsOg90pLvDUSrBchczxHJ0q0Di7-5hS93i1e5g_R8vn-cX67jCQreBzFVFAFmaw4cMXjnPE0yTMqaVrHIgWSVjSrKhVLEErRmjHBeV4VeRGndQJ5xafo6vB3sP3bFpwvN_3WmhBZMpJmJE8yygN1faCk7Z2zoMrB6k7YsaSk3LdbhnbLfbsBjQ7ou25h_JcrV0-LX_4HvgN_2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067085713</pqid></control><display><type>article</type><title>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wang, Chong ; Matthies, Hermann G.</creator><creatorcontrib>Wang, Chong ; Matthies, Hermann G.</creatorcontrib><description>Summary
The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5824</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>collocation method ; Collocation methods ; Computing time ; Conduction heating ; Conductive heat transfer ; engineering heat transfer systems ; epistemic uncertainty ; Heat transfer ; interval theory ; Parameter identification ; Parameter uncertainty ; polynomial chaos expansion ; Probabilistic methods ; Thermal expansion ; Upper bounds</subject><ispartof>International journal for numerical methods in engineering, 2018-08, Vol.115 (6), p.756-770</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><rights>2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</citedby><cites>FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</cites><orcidid>0000-0002-3077-5785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><title>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</title><title>International journal for numerical methods in engineering</title><description>Summary
The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements.</description><subject>collocation method</subject><subject>Collocation methods</subject><subject>Computing time</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>engineering heat transfer systems</subject><subject>epistemic uncertainty</subject><subject>Heat transfer</subject><subject>interval theory</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>polynomial chaos expansion</subject><subject>Probabilistic methods</subject><subject>Thermal expansion</subject><subject>Upper bounds</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SPPJarKQyplA-vIccaNq8QJtluUDeIT-Ea-BJeyZTW6c8_MlS5Cl5TMKCHsxnQwS3IWH6EJJUUWEUayYzQJVhElRU5P0ZlzG0IoTQifoI9Vv4MWa-PB7kSLfQO9Hb8_vyrhoMaDsKKD4GFdg_FaaSm87g0Oy6avseotBrPWBsBqs8YNCI-9FcapcONG56Fz-F37BsOg90pLvDUSrBchczxHJ0q0Di7-5hS93i1e5g_R8vn-cX67jCQreBzFVFAFmaw4cMXjnPE0yTMqaVrHIgWSVjSrKhVLEErRmjHBeV4VeRGndQJ5xafo6vB3sP3bFpwvN_3WmhBZMpJmJE8yygN1faCk7Z2zoMrB6k7YsaSk3LdbhnbLfbsBjQ7ou25h_JcrV0-LX_4HvgN_2Q</recordid><startdate>20180810</startdate><enddate>20180810</enddate><creator>Wang, Chong</creator><creator>Matthies, Hermann G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3077-5785</orcidid></search><sort><creationdate>20180810</creationdate><title>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</title><author>Wang, Chong ; Matthies, Hermann G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>collocation method</topic><topic>Collocation methods</topic><topic>Computing time</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>engineering heat transfer systems</topic><topic>epistemic uncertainty</topic><topic>Heat transfer</topic><topic>interval theory</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>polynomial chaos expansion</topic><topic>Probabilistic methods</topic><topic>Thermal expansion</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chong</au><au>Matthies, Hermann G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2018-08-10</date><risdate>2018</risdate><volume>115</volume><issue>6</issue><spage>756</spage><epage>770</epage><pages>756-770</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary
The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5824</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3077-5785</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2018-08, Vol.115 (6), p.756-770 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2067085713 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | collocation method Collocation methods Computing time Conduction heating Conductive heat transfer engineering heat transfer systems epistemic uncertainty Heat transfer interval theory Parameter identification Parameter uncertainty polynomial chaos expansion Probabilistic methods Thermal expansion Upper bounds |
title | Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20interval%20theory%E2%80%90based%20parameter%20identification%20method%20for%20engineering%20heat%20transfer%20systems%20with%20epistemic%20uncertainty&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Wang,%20Chong&rft.date=2018-08-10&rft.volume=115&rft.issue=6&rft.spage=756&rft.epage=770&rft.pages=756-770&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5824&rft_dat=%3Cproquest_cross%3E2067085713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2067085713&rft_id=info:pmid/&rfr_iscdi=true |