Loading…

Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty

Summary The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2018-08, Vol.115 (6), p.756-770
Main Authors: Wang, Chong, Matthies, Hermann G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3
cites cdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3
container_end_page 770
container_issue 6
container_start_page 756
container_title International journal for numerical methods in engineering
container_volume 115
creator Wang, Chong
Matthies, Hermann G.
description Summary The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements.
doi_str_mv 10.1002/nme.5824
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2067085713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067085713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SPPJarKQyplA-vIccaNq8QJtluUDeIT-Ea-BJeyZTW6c8_MlS5Cl5TMKCHsxnQwS3IWH6EJJUUWEUayYzQJVhElRU5P0ZlzG0IoTQifoI9Vv4MWa-PB7kSLfQO9Hb8_vyrhoMaDsKKD4GFdg_FaaSm87g0Oy6avseotBrPWBsBqs8YNCI-9FcapcONG56Fz-F37BsOg90pLvDUSrBchczxHJ0q0Di7-5hS93i1e5g_R8vn-cX67jCQreBzFVFAFmaw4cMXjnPE0yTMqaVrHIgWSVjSrKhVLEErRmjHBeV4VeRGndQJ5xafo6vB3sP3bFpwvN_3WmhBZMpJmJE8yygN1faCk7Z2zoMrB6k7YsaSk3LdbhnbLfbsBjQ7ou25h_JcrV0-LX_4HvgN_2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2067085713</pqid></control><display><type>article</type><title>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Chong ; Matthies, Hermann G.</creator><creatorcontrib>Wang, Chong ; Matthies, Hermann G.</creatorcontrib><description>Summary The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.5824</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>collocation method ; Collocation methods ; Computing time ; Conduction heating ; Conductive heat transfer ; engineering heat transfer systems ; epistemic uncertainty ; Heat transfer ; interval theory ; Parameter identification ; Parameter uncertainty ; polynomial chaos expansion ; Probabilistic methods ; Thermal expansion ; Upper bounds</subject><ispartof>International journal for numerical methods in engineering, 2018-08, Vol.115 (6), p.756-770</ispartof><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</citedby><cites>FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</cites><orcidid>0000-0002-3077-5785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><title>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</title><title>International journal for numerical methods in engineering</title><description>Summary The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements.</description><subject>collocation method</subject><subject>Collocation methods</subject><subject>Computing time</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>engineering heat transfer systems</subject><subject>epistemic uncertainty</subject><subject>Heat transfer</subject><subject>interval theory</subject><subject>Parameter identification</subject><subject>Parameter uncertainty</subject><subject>polynomial chaos expansion</subject><subject>Probabilistic methods</subject><subject>Thermal expansion</subject><subject>Upper bounds</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqUg8QmW2LBJ8SPPJarKQyplA-vIccaNq8QJtluUDeIT-Ea-BJeyZTW6c8_MlS5Cl5TMKCHsxnQwS3IWH6EJJUUWEUayYzQJVhElRU5P0ZlzG0IoTQifoI9Vv4MWa-PB7kSLfQO9Hb8_vyrhoMaDsKKD4GFdg_FaaSm87g0Oy6avseotBrPWBsBqs8YNCI-9FcapcONG56Fz-F37BsOg90pLvDUSrBchczxHJ0q0Di7-5hS93i1e5g_R8vn-cX67jCQreBzFVFAFmaw4cMXjnPE0yTMqaVrHIgWSVjSrKhVLEErRmjHBeV4VeRGndQJ5xafo6vB3sP3bFpwvN_3WmhBZMpJmJE8yygN1faCk7Z2zoMrB6k7YsaSk3LdbhnbLfbsBjQ7ou25h_JcrV0-LX_4HvgN_2Q</recordid><startdate>20180810</startdate><enddate>20180810</enddate><creator>Wang, Chong</creator><creator>Matthies, Hermann G.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3077-5785</orcidid></search><sort><creationdate>20180810</creationdate><title>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</title><author>Wang, Chong ; Matthies, Hermann G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>collocation method</topic><topic>Collocation methods</topic><topic>Computing time</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>engineering heat transfer systems</topic><topic>epistemic uncertainty</topic><topic>Heat transfer</topic><topic>interval theory</topic><topic>Parameter identification</topic><topic>Parameter uncertainty</topic><topic>polynomial chaos expansion</topic><topic>Probabilistic methods</topic><topic>Thermal expansion</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chong</creatorcontrib><creatorcontrib>Matthies, Hermann G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chong</au><au>Matthies, Hermann G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2018-08-10</date><risdate>2018</risdate><volume>115</volume><issue>6</issue><spage>756</spage><epage>770</epage><pages>756-770</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>Summary The parameter identification problem with epistemic uncertainty, where only a small amount of experimental information is available, is a challenging issue in engineering. To overcome the drawback of traditional probabilistic methods in dealing with limited data, this paper proposes a novel interval theory‐based inverse analysis method. First, the interval variables are introduced to represent the input uncertainties, whose lower and upper bounds are to be identified. Subsequently, an unbiased estimation method is presented to quantify the experimental response interval from limited measurements. Meanwhile, a quantitative metric is defined to characterize the relative errors between computational and experimental response intervals by which the interval parameter identification can be constructed as a nested‐loop optimization procedure. To improve the computational efficiency of response prediction with respect to various interval variables, a universal surrogate model is established in the support box via Legendre polynomial chaos expansion, where the expansion coefficients can be evaluated by a collocation method under Clenshaw‐Curtis points and Smolyak algorithm. Eventually, a heat conduction example is provided to verify the feasibility of proposed method, especially in the case with noise‐contaminated temperature measurements.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nme.5824</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3077-5785</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2018-08, Vol.115 (6), p.756-770
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2067085713
source Wiley-Blackwell Read & Publish Collection
subjects collocation method
Collocation methods
Computing time
Conduction heating
Conductive heat transfer
engineering heat transfer systems
epistemic uncertainty
Heat transfer
interval theory
Parameter identification
Parameter uncertainty
polynomial chaos expansion
Probabilistic methods
Thermal expansion
Upper bounds
title Novel interval theory‐based parameter identification method for engineering heat transfer systems with epistemic uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20interval%20theory%E2%80%90based%20parameter%20identification%20method%20for%20engineering%20heat%20transfer%20systems%20with%20epistemic%20uncertainty&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Wang,%20Chong&rft.date=2018-08-10&rft.volume=115&rft.issue=6&rft.spage=756&rft.epage=770&rft.pages=756-770&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.5824&rft_dat=%3Cproquest_cross%3E2067085713%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2934-41a1fe7cb3e3f3482365871c16d4a6e06b17bbf4ceaff1d22a338b98946d5e8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2067085713&rft_id=info:pmid/&rfr_iscdi=true