Loading…

MMDF-LDA: An improved Multi-Modal Latent Dirichlet Allocation model for social image annotation

•A multi-modal data fusion model for social images annotation is proposed.•A probability topic model is learned by fusing multi-modal metadata.•Geographical topics are generated from geographical region of social images.•Patches of social images are annotated by the proposed model.•Experiments demon...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications 2018-08, Vol.104, p.168-184
Main Authors: Zheng, Liu, Caiming, Zhang, Caixian, Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-b5579e2d27dfdd4c189c40ff5c56a3a63b0728e3a2470a743a7973481c3c315a3
cites cdi_FETCH-LOGICAL-c328t-b5579e2d27dfdd4c189c40ff5c56a3a63b0728e3a2470a743a7973481c3c315a3
container_end_page 184
container_issue
container_start_page 168
container_title Expert systems with applications
container_volume 104
creator Zheng, Liu
Caiming, Zhang
Caixian, Chen
description •A multi-modal data fusion model for social images annotation is proposed.•A probability topic model is learned by fusing multi-modal metadata.•Geographical topics are generated from geographical region of social images.•Patches of social images are annotated by the proposed model.•Experiments demonstrate the effectiveness of the proposed solution. Social image annotation, which aims at inferring a set of semantic concepts for a social image, is an effective and straightforward way to facilitate social image search. Conventional approaches mainly demonstrated on adopting the visual features and tags, without considering other types of metadata. How to enhance the accuracy of social image annotation by fully exploiting multi-modal features is still an opening and challenging problem. In this paper, we propose an improved Multi-Modal Data Fusion based Latent Dirichlet Allocation (LDA) topic model (MMDF-LDA) to annotate social images via fusing visual content, user-supplied tags, user comments, and geographic information. When MMDF-LDA samples annotations for one data modality, all the other data modalities are exploited. In MMDF-LDA, geographical topics are generated from GPS locations of social images, and annotations have different probability to be used in different geographical regions. A social image is divided into several patches in advance, and then MMDF-LDA assigns annotations for the patches of social images by estimating the probability of annotation-patch assignment. Through experiments in social image annotation and retrieval on several datasets, we demonstrate the effectiveness of the proposed MMDF-LDA model in comparison with state-of-the-art methods.
doi_str_mv 10.1016/j.eswa.2018.03.014
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068487151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0957417418301544</els_id><sourcerecordid>2068487151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-b5579e2d27dfdd4c189c40ff5c56a3a63b0728e3a2470a743a7973481c3c315a3</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmBP8lzhBLFFLASkRC8yWazvgKI2L7Rbx9riUmeku57v3uweAa4xyjHB5O-QmfMmcIFzliOYIsxMwwxWnWclregpmqC54xjBn5-AihAEhzBHiMyC6brnK2mVzB5sJ2s3Wu73RsNuN0Wad03KErYxminBpvVUfo4mwGUenZLRughunzQh752FwyibYbuS7gXKaXPwlLsFZL8dgrv7mHLytHl4XT1n78vi8aNpMUVLFbF0UvDZEE657rZnCVa0Y6vtCFaWksqRrxEllqCSMI8kZlbzmlFVYUUVxIekc3Bz3pgc-dyZEMbidn9JJQVBZsYrjAieKHCnlXQje9GLrU2P_LTASB5FiEAeR4iBSICqSyBS6P4ZM6r-3xougrJmU0dYbFYV29r_4DwZaevw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068487151</pqid></control><display><type>article</type><title>MMDF-LDA: An improved Multi-Modal Latent Dirichlet Allocation model for social image annotation</title><source>ScienceDirect Freedom Collection</source><creator>Zheng, Liu ; Caiming, Zhang ; Caixian, Chen</creator><creatorcontrib>Zheng, Liu ; Caiming, Zhang ; Caixian, Chen</creatorcontrib><description>•A multi-modal data fusion model for social images annotation is proposed.•A probability topic model is learned by fusing multi-modal metadata.•Geographical topics are generated from geographical region of social images.•Patches of social images are annotated by the proposed model.•Experiments demonstrate the effectiveness of the proposed solution. Social image annotation, which aims at inferring a set of semantic concepts for a social image, is an effective and straightforward way to facilitate social image search. Conventional approaches mainly demonstrated on adopting the visual features and tags, without considering other types of metadata. How to enhance the accuracy of social image annotation by fully exploiting multi-modal features is still an opening and challenging problem. In this paper, we propose an improved Multi-Modal Data Fusion based Latent Dirichlet Allocation (LDA) topic model (MMDF-LDA) to annotate social images via fusing visual content, user-supplied tags, user comments, and geographic information. When MMDF-LDA samples annotations for one data modality, all the other data modalities are exploited. In MMDF-LDA, geographical topics are generated from GPS locations of social images, and annotations have different probability to be used in different geographical regions. A social image is divided into several patches in advance, and then MMDF-LDA assigns annotations for the patches of social images by estimating the probability of annotation-patch assignment. Through experiments in social image annotation and retrieval on several datasets, we demonstrate the effectiveness of the proposed MMDF-LDA model in comparison with state-of-the-art methods.</description><identifier>ISSN: 0957-4174</identifier><identifier>EISSN: 1873-6793</identifier><identifier>DOI: 10.1016/j.eswa.2018.03.014</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Data integration ; Dirichlet problem ; Geographical topic ; Image annotation ; Image enhancement ; LDA model ; Modal data ; Multi-modal data fusion ; Multimedia ; Multisensor fusion ; Patches (structures) ; Semantic annotation ; Semantic web ; Social image ; Social networks ; Tags ; Web sites</subject><ispartof>Expert systems with applications, 2018-08, Vol.104, p.168-184</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-b5579e2d27dfdd4c189c40ff5c56a3a63b0728e3a2470a743a7973481c3c315a3</citedby><cites>FETCH-LOGICAL-c328t-b5579e2d27dfdd4c189c40ff5c56a3a63b0728e3a2470a743a7973481c3c315a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zheng, Liu</creatorcontrib><creatorcontrib>Caiming, Zhang</creatorcontrib><creatorcontrib>Caixian, Chen</creatorcontrib><title>MMDF-LDA: An improved Multi-Modal Latent Dirichlet Allocation model for social image annotation</title><title>Expert systems with applications</title><description>•A multi-modal data fusion model for social images annotation is proposed.•A probability topic model is learned by fusing multi-modal metadata.•Geographical topics are generated from geographical region of social images.•Patches of social images are annotated by the proposed model.•Experiments demonstrate the effectiveness of the proposed solution. Social image annotation, which aims at inferring a set of semantic concepts for a social image, is an effective and straightforward way to facilitate social image search. Conventional approaches mainly demonstrated on adopting the visual features and tags, without considering other types of metadata. How to enhance the accuracy of social image annotation by fully exploiting multi-modal features is still an opening and challenging problem. In this paper, we propose an improved Multi-Modal Data Fusion based Latent Dirichlet Allocation (LDA) topic model (MMDF-LDA) to annotate social images via fusing visual content, user-supplied tags, user comments, and geographic information. When MMDF-LDA samples annotations for one data modality, all the other data modalities are exploited. In MMDF-LDA, geographical topics are generated from GPS locations of social images, and annotations have different probability to be used in different geographical regions. A social image is divided into several patches in advance, and then MMDF-LDA assigns annotations for the patches of social images by estimating the probability of annotation-patch assignment. Through experiments in social image annotation and retrieval on several datasets, we demonstrate the effectiveness of the proposed MMDF-LDA model in comparison with state-of-the-art methods.</description><subject>Data integration</subject><subject>Dirichlet problem</subject><subject>Geographical topic</subject><subject>Image annotation</subject><subject>Image enhancement</subject><subject>LDA model</subject><subject>Modal data</subject><subject>Multi-modal data fusion</subject><subject>Multimedia</subject><subject>Multisensor fusion</subject><subject>Patches (structures)</subject><subject>Semantic annotation</subject><subject>Semantic web</subject><subject>Social image</subject><subject>Social networks</subject><subject>Tags</subject><subject>Web sites</subject><issn>0957-4174</issn><issn>1873-6793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmBP8lzhBLFFLASkRC8yWazvgKI2L7Rbx9riUmeku57v3uweAa4xyjHB5O-QmfMmcIFzliOYIsxMwwxWnWclregpmqC54xjBn5-AihAEhzBHiMyC6brnK2mVzB5sJ2s3Wu73RsNuN0Wad03KErYxminBpvVUfo4mwGUenZLRughunzQh752FwyibYbuS7gXKaXPwlLsFZL8dgrv7mHLytHl4XT1n78vi8aNpMUVLFbF0UvDZEE657rZnCVa0Y6vtCFaWksqRrxEllqCSMI8kZlbzmlFVYUUVxIekc3Bz3pgc-dyZEMbidn9JJQVBZsYrjAieKHCnlXQje9GLrU2P_LTASB5FiEAeR4iBSICqSyBS6P4ZM6r-3xougrJmU0dYbFYV29r_4DwZaevw</recordid><startdate>20180815</startdate><enddate>20180815</enddate><creator>Zheng, Liu</creator><creator>Caiming, Zhang</creator><creator>Caixian, Chen</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180815</creationdate><title>MMDF-LDA: An improved Multi-Modal Latent Dirichlet Allocation model for social image annotation</title><author>Zheng, Liu ; Caiming, Zhang ; Caixian, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-b5579e2d27dfdd4c189c40ff5c56a3a63b0728e3a2470a743a7973481c3c315a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data integration</topic><topic>Dirichlet problem</topic><topic>Geographical topic</topic><topic>Image annotation</topic><topic>Image enhancement</topic><topic>LDA model</topic><topic>Modal data</topic><topic>Multi-modal data fusion</topic><topic>Multimedia</topic><topic>Multisensor fusion</topic><topic>Patches (structures)</topic><topic>Semantic annotation</topic><topic>Semantic web</topic><topic>Social image</topic><topic>Social networks</topic><topic>Tags</topic><topic>Web sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Liu</creatorcontrib><creatorcontrib>Caiming, Zhang</creatorcontrib><creatorcontrib>Caixian, Chen</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Liu</au><au>Caiming, Zhang</au><au>Caixian, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MMDF-LDA: An improved Multi-Modal Latent Dirichlet Allocation model for social image annotation</atitle><jtitle>Expert systems with applications</jtitle><date>2018-08-15</date><risdate>2018</risdate><volume>104</volume><spage>168</spage><epage>184</epage><pages>168-184</pages><issn>0957-4174</issn><eissn>1873-6793</eissn><abstract>•A multi-modal data fusion model for social images annotation is proposed.•A probability topic model is learned by fusing multi-modal metadata.•Geographical topics are generated from geographical region of social images.•Patches of social images are annotated by the proposed model.•Experiments demonstrate the effectiveness of the proposed solution. Social image annotation, which aims at inferring a set of semantic concepts for a social image, is an effective and straightforward way to facilitate social image search. Conventional approaches mainly demonstrated on adopting the visual features and tags, without considering other types of metadata. How to enhance the accuracy of social image annotation by fully exploiting multi-modal features is still an opening and challenging problem. In this paper, we propose an improved Multi-Modal Data Fusion based Latent Dirichlet Allocation (LDA) topic model (MMDF-LDA) to annotate social images via fusing visual content, user-supplied tags, user comments, and geographic information. When MMDF-LDA samples annotations for one data modality, all the other data modalities are exploited. In MMDF-LDA, geographical topics are generated from GPS locations of social images, and annotations have different probability to be used in different geographical regions. A social image is divided into several patches in advance, and then MMDF-LDA assigns annotations for the patches of social images by estimating the probability of annotation-patch assignment. Through experiments in social image annotation and retrieval on several datasets, we demonstrate the effectiveness of the proposed MMDF-LDA model in comparison with state-of-the-art methods.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.eswa.2018.03.014</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4174
ispartof Expert systems with applications, 2018-08, Vol.104, p.168-184
issn 0957-4174
1873-6793
language eng
recordid cdi_proquest_journals_2068487151
source ScienceDirect Freedom Collection
subjects Data integration
Dirichlet problem
Geographical topic
Image annotation
Image enhancement
LDA model
Modal data
Multi-modal data fusion
Multimedia
Multisensor fusion
Patches (structures)
Semantic annotation
Semantic web
Social image
Social networks
Tags
Web sites
title MMDF-LDA: An improved Multi-Modal Latent Dirichlet Allocation model for social image annotation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A27%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MMDF-LDA:%20An%20improved%20Multi-Modal%20Latent%20Dirichlet%20Allocation%20model%20for%20social%20image%20annotation&rft.jtitle=Expert%20systems%20with%20applications&rft.au=Zheng,%20Liu&rft.date=2018-08-15&rft.volume=104&rft.spage=168&rft.epage=184&rft.pages=168-184&rft.issn=0957-4174&rft.eissn=1873-6793&rft_id=info:doi/10.1016/j.eswa.2018.03.014&rft_dat=%3Cproquest_cross%3E2068487151%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-b5579e2d27dfdd4c189c40ff5c56a3a63b0728e3a2470a743a7973481c3c315a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2068487151&rft_id=info:pmid/&rfr_iscdi=true