Loading…

Fuzzy classifier fusion: an application to reservoir facies identification

An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian, k -nearest neighbor (kNN), and support vector machine (SVM) to automati...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2018-08, Vol.30 (3), p.825-834
Main Authors: Mollajan, Amir, Memarian, Hossein, Nabi-Bidhendi, Majid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193
cites cdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193
container_end_page 834
container_issue 3
container_start_page 825
container_title Neural computing & applications
container_volume 30
creator Mollajan, Amir
Memarian, Hossein
Nabi-Bidhendi, Majid
description An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian, k -nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.
doi_str_mv 10.1007/s00521-016-2690-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068969241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068969241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA8-rkczfepPhJwYueQ5pOJKXursmu0P56U1bw5GWGYZ5nBl5CLhlcM4D6JgMozipguuLaQAVHZMakEJUA1RyTGRhZtlqKU3KW8wYApG7UjLw8jPv9jvqtyzmGiImGMceuvaWupa7vt9G7ocx06GjCjOm7i4VxPmKmcY3tUKwJOScnwW0zXvz2OXl_uH9bPFXL18fnxd2y8oLpoTJaenBoVhoFbzR3bh1EDUrUWGPwUiMXphTF-UrVjTINCIYm8LXzhjEj5uRqutun7mvEPNhNN6a2vLQcdGO04ZIVik2UT13OCYPtU_x0aWcZ2ENkdorMlsjsITILxeGTkwvbfmD6u_y_9AMeUG4p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068969241</pqid></control><display><type>article</type><title>Fuzzy classifier fusion: an application to reservoir facies identification</title><source>Springer Link</source><creator>Mollajan, Amir ; Memarian, Hossein ; Nabi-Bidhendi, Majid</creator><creatorcontrib>Mollajan, Amir ; Memarian, Hossein ; Nabi-Bidhendi, Majid</creatorcontrib><description>An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian, k -nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2690-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Bayesian analysis ; Classifiers ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Image Processing and Computer Vision ; Original Article ; Performance enhancement ; Probability and Statistics in Computer Science ; Support vector machines</subject><ispartof>Neural computing &amp; applications, 2018-08, Vol.30 (3), p.825-834</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</citedby><cites>FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mollajan, Amir</creatorcontrib><creatorcontrib>Memarian, Hossein</creatorcontrib><creatorcontrib>Nabi-Bidhendi, Majid</creatorcontrib><title>Fuzzy classifier fusion: an application to reservoir facies identification</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian, k -nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Classifiers</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Performance enhancement</subject><subject>Probability and Statistics in Computer Science</subject><subject>Support vector machines</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA8-rkczfepPhJwYueQ5pOJKXursmu0P56U1bw5GWGYZ5nBl5CLhlcM4D6JgMozipguuLaQAVHZMakEJUA1RyTGRhZtlqKU3KW8wYApG7UjLw8jPv9jvqtyzmGiImGMceuvaWupa7vt9G7ocx06GjCjOm7i4VxPmKmcY3tUKwJOScnwW0zXvz2OXl_uH9bPFXL18fnxd2y8oLpoTJaenBoVhoFbzR3bh1EDUrUWGPwUiMXphTF-UrVjTINCIYm8LXzhjEj5uRqutun7mvEPNhNN6a2vLQcdGO04ZIVik2UT13OCYPtU_x0aWcZ2ENkdorMlsjsITILxeGTkwvbfmD6u_y_9AMeUG4p</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Mollajan, Amir</creator><creator>Memarian, Hossein</creator><creator>Nabi-Bidhendi, Majid</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Fuzzy classifier fusion: an application to reservoir facies identification</title><author>Mollajan, Amir ; Memarian, Hossein ; Nabi-Bidhendi, Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Classifiers</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Performance enhancement</topic><topic>Probability and Statistics in Computer Science</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mollajan, Amir</creatorcontrib><creatorcontrib>Memarian, Hossein</creatorcontrib><creatorcontrib>Nabi-Bidhendi, Majid</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mollajan, Amir</au><au>Memarian, Hossein</au><au>Nabi-Bidhendi, Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy classifier fusion: an application to reservoir facies identification</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>30</volume><issue>3</issue><spage>825</spage><epage>834</epage><pages>825-834</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian, k -nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2690-0</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2018-08, Vol.30 (3), p.825-834
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2068969241
source Springer Link
subjects Algorithms
Artificial Intelligence
Bayesian analysis
Classifiers
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Image Processing and Computer Vision
Original Article
Performance enhancement
Probability and Statistics in Computer Science
Support vector machines
title Fuzzy classifier fusion: an application to reservoir facies identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20classifier%20fusion:%20an%20application%20to%20reservoir%20facies%20identification&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Mollajan,%20Amir&rft.date=2018-08-01&rft.volume=30&rft.issue=3&rft.spage=825&rft.epage=834&rft.pages=825-834&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2690-0&rft_dat=%3Cproquest_cross%3E2068969241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2068969241&rft_id=info:pmid/&rfr_iscdi=true