Loading…
Fuzzy classifier fusion: an application to reservoir facies identification
An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian, k -nearest neighbor (kNN), and support vector machine (SVM) to automati...
Saved in:
Published in: | Neural computing & applications 2018-08, Vol.30 (3), p.825-834 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193 |
container_end_page | 834 |
container_issue | 3 |
container_start_page | 825 |
container_title | Neural computing & applications |
container_volume | 30 |
creator | Mollajan, Amir Memarian, Hossein Nabi-Bidhendi, Majid |
description | An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian,
k
-nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria. |
doi_str_mv | 10.1007/s00521-016-2690-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2068969241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2068969241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA8-rkczfepPhJwYueQ5pOJKXursmu0P56U1bw5GWGYZ5nBl5CLhlcM4D6JgMozipguuLaQAVHZMakEJUA1RyTGRhZtlqKU3KW8wYApG7UjLw8jPv9jvqtyzmGiImGMceuvaWupa7vt9G7ocx06GjCjOm7i4VxPmKmcY3tUKwJOScnwW0zXvz2OXl_uH9bPFXL18fnxd2y8oLpoTJaenBoVhoFbzR3bh1EDUrUWGPwUiMXphTF-UrVjTINCIYm8LXzhjEj5uRqutun7mvEPNhNN6a2vLQcdGO04ZIVik2UT13OCYPtU_x0aWcZ2ENkdorMlsjsITILxeGTkwvbfmD6u_y_9AMeUG4p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068969241</pqid></control><display><type>article</type><title>Fuzzy classifier fusion: an application to reservoir facies identification</title><source>Springer Link</source><creator>Mollajan, Amir ; Memarian, Hossein ; Nabi-Bidhendi, Majid</creator><creatorcontrib>Mollajan, Amir ; Memarian, Hossein ; Nabi-Bidhendi, Majid</creatorcontrib><description>An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian,
k
-nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-016-2690-0</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial Intelligence ; Bayesian analysis ; Classifiers ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Image Processing and Computer Vision ; Original Article ; Performance enhancement ; Probability and Statistics in Computer Science ; Support vector machines</subject><ispartof>Neural computing & applications, 2018-08, Vol.30 (3), p.825-834</ispartof><rights>The Natural Computing Applications Forum 2016</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</citedby><cites>FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mollajan, Amir</creatorcontrib><creatorcontrib>Memarian, Hossein</creatorcontrib><creatorcontrib>Nabi-Bidhendi, Majid</creatorcontrib><title>Fuzzy classifier fusion: an application to reservoir facies identification</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian,
k
-nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Classifiers</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Performance enhancement</subject><subject>Probability and Statistics in Computer Science</subject><subject>Support vector machines</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA8-rkczfepPhJwYueQ5pOJKXursmu0P56U1bw5GWGYZ5nBl5CLhlcM4D6JgMozipguuLaQAVHZMakEJUA1RyTGRhZtlqKU3KW8wYApG7UjLw8jPv9jvqtyzmGiImGMceuvaWupa7vt9G7ocx06GjCjOm7i4VxPmKmcY3tUKwJOScnwW0zXvz2OXl_uH9bPFXL18fnxd2y8oLpoTJaenBoVhoFbzR3bh1EDUrUWGPwUiMXphTF-UrVjTINCIYm8LXzhjEj5uRqutun7mvEPNhNN6a2vLQcdGO04ZIVik2UT13OCYPtU_x0aWcZ2ENkdorMlsjsITILxeGTkwvbfmD6u_y_9AMeUG4p</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Mollajan, Amir</creator><creator>Memarian, Hossein</creator><creator>Nabi-Bidhendi, Majid</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180801</creationdate><title>Fuzzy classifier fusion: an application to reservoir facies identification</title><author>Mollajan, Amir ; Memarian, Hossein ; Nabi-Bidhendi, Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Classifiers</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Performance enhancement</topic><topic>Probability and Statistics in Computer Science</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mollajan, Amir</creatorcontrib><creatorcontrib>Memarian, Hossein</creatorcontrib><creatorcontrib>Nabi-Bidhendi, Majid</creatorcontrib><collection>CrossRef</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mollajan, Amir</au><au>Memarian, Hossein</au><au>Nabi-Bidhendi, Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy classifier fusion: an application to reservoir facies identification</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>30</volume><issue>3</issue><spage>825</spage><epage>834</epage><pages>825-834</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>An application of classifier fusion technique is presented to improve the performance of automated reservoir facies identification system. The algorithm presented in this study uses three well-known classifiers, namely Bayesian,
k
-nearest neighbor (kNN), and support vector machine (SVM) to automatically identify four defined facies of Asmari Formation from log-derived amplitude versus offset (AVO) attributes. Fuzzy Sugeno integral (FSI) method is then employed to combine the outputs of three investigated classifiers and increase the consistency of reservoir facies identification process. The experimental results obtained from applying the presented algorithm on data related to three wells drilled in Asmari Formation provide evidence of the effectiveness of the proposed algorithm regarding true positive (TP), false positive (FP), and classification accuracy criteria.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-016-2690-0</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2018-08, Vol.30 (3), p.825-834 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2068969241 |
source | Springer Link |
subjects | Algorithms Artificial Intelligence Bayesian analysis Classifiers Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Image Processing and Computer Vision Original Article Performance enhancement Probability and Statistics in Computer Science Support vector machines |
title | Fuzzy classifier fusion: an application to reservoir facies identification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20classifier%20fusion:%20an%20application%20to%20reservoir%20facies%20identification&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Mollajan,%20Amir&rft.date=2018-08-01&rft.volume=30&rft.issue=3&rft.spage=825&rft.epage=834&rft.pages=825-834&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-016-2690-0&rft_dat=%3Cproquest_cross%3E2068969241%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-964c0ae9b6e32862aadf370537e7efc46e2396e2522b578598031e9f2dac91193%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2068969241&rft_id=info:pmid/&rfr_iscdi=true |