Loading…
Photoresponse of KNbO^sub 3^–AFeO^sub 3^ (A?=?Bi^sup 3+^ or La^sup 3+^) ceramics and its relationship with bandgap narrowing
The crystal structure of (1-x)KNbO3–xBiFeO3 (KNBF) and (1-x)KNbO3-LaFeO3 (KNLF) (where x = 0.00; 0.01; 0.02; 0.04; 0.08; 0.16; 0.32) was evaluated by XRD and Raman spectroscopy. XRD data show the crystal symmetry to evolve from orthorhombic to tetragonal with increasing x. The optical bandgap was fo...
Saved in:
Published in: | Materials letters 2018-06, Vol.221, p.326 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The crystal structure of (1-x)KNbO3–xBiFeO3 (KNBF) and (1-x)KNbO3-LaFeO3 (KNLF) (where x = 0.00; 0.01; 0.02; 0.04; 0.08; 0.16; 0.32) was evaluated by XRD and Raman spectroscopy. XRD data show the crystal symmetry to evolve from orthorhombic to tetragonal with increasing x. The optical bandgap was found to narrow systematically with increasing x. Raman spectroscopy analysis corroborated long-range polar order in all compositions. The photoresponse of x = 0.32 shows a typical diode–like behaviour, with current and voltage of 0.115 µA and 0.075 V for KNBF and 0.19 µA and 0.035 V for KNLF, respectively. To our knowledge these represent the largest values among KNbO3–based ceramics, making them promising for photovoltaic applications. |
---|---|
ISSN: | 0167-577X 1873-4979 |