Loading…
Microstructure and mechanical properties of fiber laser welded QP980 steel
The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength,...
Saved in:
Published in: | Journal of materials processing technology 2018-06, Vol.256, p.229-238 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3 |
container_end_page | 238 |
container_issue | |
container_start_page | 229 |
container_title | Journal of materials processing technology |
container_volume | 256 |
creator | Guo, Wei Wan, Zhandong Peng, Peng Jia, Qiang Zou, Guisheng Peng, Yun |
description | The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks. |
doi_str_mv | 10.1016/j.jmatprotec.2018.02.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070921570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013618300608</els_id><sourcerecordid>2070921570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDpY4J6ztJHaOUPGrIkCCs-XaG-EoTYrtgnh7XBWJI5fdy8zszkcIZVAyYM1FX_ZrkzZhSmhLDkyVwEtg9QGZMSVFUUlZHZIZtLwqgInmmJzE2AMwCUrNyMOjt2GKKWxt2gakZnR0jfbdjN6agebcDYbkMdKpo51fYaCDiXl-4eDQ0ZfnVgGNCXE4JUedGSKe_e45ebu5fl3cFcun2_vF5bKwFeOp6JyoVhINF51qsOa25aqWFbboGlD5z4YbwV1dKdnUKKFyjQVjBKudQGg7MSfn-9z83McWY9L9tA1jPqk5yBzAaglZpfaqXb0YsNOb4NcmfGsGekdO9_qPnN6R08B1JpetV3sr5hafHoOO1uNo0fmANmk3-f9DfgDZDnur</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070921570</pqid></control><display><type>article</type><title>Microstructure and mechanical properties of fiber laser welded QP980 steel</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Guo, Wei ; Wan, Zhandong ; Peng, Peng ; Jia, Qiang ; Zou, Guisheng ; Peng, Yun</creator><creatorcontrib>Guo, Wei ; Wan, Zhandong ; Peng, Peng ; Jia, Qiang ; Zou, Guisheng ; Peng, Yun</creatorcontrib><description>The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2018.02.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Base metal ; Crack propagation ; Data analysis ; Digital image correlation (DIC) ; Ductile fracture ; Elongation ; Energy absorption ; Fatigue cracks ; Fatigue failure ; Fatigue limit ; Fatigue properties ; Fiber lasers ; Fracture mechanics ; Heat affected zone ; High strain rate ; Laser beam welding ; Laser welding ; Lasers ; Martensitic stainless steels ; Mechanical properties ; Microstructure ; QP steels ; Steel ; Strain rate ; Stress concentration ; Striations ; Tempered martensite ; Tensile strength ; Welding</subject><ispartof>Journal of materials processing technology, 2018-06, Vol.256, p.229-238</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</citedby><cites>FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wan, Zhandong</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><creatorcontrib>Jia, Qiang</creatorcontrib><creatorcontrib>Zou, Guisheng</creatorcontrib><creatorcontrib>Peng, Yun</creatorcontrib><title>Microstructure and mechanical properties of fiber laser welded QP980 steel</title><title>Journal of materials processing technology</title><description>The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks.</description><subject>Base metal</subject><subject>Crack propagation</subject><subject>Data analysis</subject><subject>Digital image correlation (DIC)</subject><subject>Ductile fracture</subject><subject>Elongation</subject><subject>Energy absorption</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue limit</subject><subject>Fatigue properties</subject><subject>Fiber lasers</subject><subject>Fracture mechanics</subject><subject>Heat affected zone</subject><subject>High strain rate</subject><subject>Laser beam welding</subject><subject>Laser welding</subject><subject>Lasers</subject><subject>Martensitic stainless steels</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>QP steels</subject><subject>Steel</subject><subject>Strain rate</subject><subject>Stress concentration</subject><subject>Striations</subject><subject>Tempered martensite</subject><subject>Tensile strength</subject><subject>Welding</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDpY4J6ztJHaOUPGrIkCCs-XaG-EoTYrtgnh7XBWJI5fdy8zszkcIZVAyYM1FX_ZrkzZhSmhLDkyVwEtg9QGZMSVFUUlZHZIZtLwqgInmmJzE2AMwCUrNyMOjt2GKKWxt2gakZnR0jfbdjN6agebcDYbkMdKpo51fYaCDiXl-4eDQ0ZfnVgGNCXE4JUedGSKe_e45ebu5fl3cFcun2_vF5bKwFeOp6JyoVhINF51qsOa25aqWFbboGlD5z4YbwV1dKdnUKKFyjQVjBKudQGg7MSfn-9z83McWY9L9tA1jPqk5yBzAaglZpfaqXb0YsNOb4NcmfGsGekdO9_qPnN6R08B1JpetV3sr5hafHoOO1uNo0fmANmk3-f9DfgDZDnur</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Guo, Wei</creator><creator>Wan, Zhandong</creator><creator>Peng, Peng</creator><creator>Jia, Qiang</creator><creator>Zou, Guisheng</creator><creator>Peng, Yun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201806</creationdate><title>Microstructure and mechanical properties of fiber laser welded QP980 steel</title><author>Guo, Wei ; Wan, Zhandong ; Peng, Peng ; Jia, Qiang ; Zou, Guisheng ; Peng, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Base metal</topic><topic>Crack propagation</topic><topic>Data analysis</topic><topic>Digital image correlation (DIC)</topic><topic>Ductile fracture</topic><topic>Elongation</topic><topic>Energy absorption</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue limit</topic><topic>Fatigue properties</topic><topic>Fiber lasers</topic><topic>Fracture mechanics</topic><topic>Heat affected zone</topic><topic>High strain rate</topic><topic>Laser beam welding</topic><topic>Laser welding</topic><topic>Lasers</topic><topic>Martensitic stainless steels</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>QP steels</topic><topic>Steel</topic><topic>Strain rate</topic><topic>Stress concentration</topic><topic>Striations</topic><topic>Tempered martensite</topic><topic>Tensile strength</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wan, Zhandong</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><creatorcontrib>Jia, Qiang</creatorcontrib><creatorcontrib>Zou, Guisheng</creatorcontrib><creatorcontrib>Peng, Yun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wei</au><au>Wan, Zhandong</au><au>Peng, Peng</au><au>Jia, Qiang</au><au>Zou, Guisheng</au><au>Peng, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and mechanical properties of fiber laser welded QP980 steel</atitle><jtitle>Journal of materials processing technology</jtitle><date>2018-06</date><risdate>2018</risdate><volume>256</volume><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2018.02.015</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-0136 |
ispartof | Journal of materials processing technology, 2018-06, Vol.256, p.229-238 |
issn | 0924-0136 1873-4774 |
language | eng |
recordid | cdi_proquest_journals_2070921570 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Base metal Crack propagation Data analysis Digital image correlation (DIC) Ductile fracture Elongation Energy absorption Fatigue cracks Fatigue failure Fatigue limit Fatigue properties Fiber lasers Fracture mechanics Heat affected zone High strain rate Laser beam welding Laser welding Lasers Martensitic stainless steels Mechanical properties Microstructure QP steels Steel Strain rate Stress concentration Striations Tempered martensite Tensile strength Welding |
title | Microstructure and mechanical properties of fiber laser welded QP980 steel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20mechanical%20properties%20of%20fiber%20laser%20welded%20QP980%20steel&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Guo,%20Wei&rft.date=2018-06&rft.volume=256&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2018.02.015&rft_dat=%3Cproquest_cross%3E2070921570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2070921570&rft_id=info:pmid/&rfr_iscdi=true |