Loading…

Microstructure and mechanical properties of fiber laser welded QP980 steel

The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology 2018-06, Vol.256, p.229-238
Main Authors: Guo, Wei, Wan, Zhandong, Peng, Peng, Jia, Qiang, Zou, Guisheng, Peng, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3
cites cdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3
container_end_page 238
container_issue
container_start_page 229
container_title Journal of materials processing technology
container_volume 256
creator Guo, Wei
Wan, Zhandong
Peng, Peng
Jia, Qiang
Zou, Guisheng
Peng, Yun
description The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks.
doi_str_mv 10.1016/j.jmatprotec.2018.02.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2070921570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924013618300608</els_id><sourcerecordid>2070921570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwDpY4J6ztJHaOUPGrIkCCs-XaG-EoTYrtgnh7XBWJI5fdy8zszkcIZVAyYM1FX_ZrkzZhSmhLDkyVwEtg9QGZMSVFUUlZHZIZtLwqgInmmJzE2AMwCUrNyMOjt2GKKWxt2gakZnR0jfbdjN6agebcDYbkMdKpo51fYaCDiXl-4eDQ0ZfnVgGNCXE4JUedGSKe_e45ebu5fl3cFcun2_vF5bKwFeOp6JyoVhINF51qsOa25aqWFbboGlD5z4YbwV1dKdnUKKFyjQVjBKudQGg7MSfn-9z83McWY9L9tA1jPqk5yBzAaglZpfaqXb0YsNOb4NcmfGsGekdO9_qPnN6R08B1JpetV3sr5hafHoOO1uNo0fmANmk3-f9DfgDZDnur</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070921570</pqid></control><display><type>article</type><title>Microstructure and mechanical properties of fiber laser welded QP980 steel</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Guo, Wei ; Wan, Zhandong ; Peng, Peng ; Jia, Qiang ; Zou, Guisheng ; Peng, Yun</creator><creatorcontrib>Guo, Wei ; Wan, Zhandong ; Peng, Peng ; Jia, Qiang ; Zou, Guisheng ; Peng, Yun</creatorcontrib><description>The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks.</description><identifier>ISSN: 0924-0136</identifier><identifier>EISSN: 1873-4774</identifier><identifier>DOI: 10.1016/j.jmatprotec.2018.02.015</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Base metal ; Crack propagation ; Data analysis ; Digital image correlation (DIC) ; Ductile fracture ; Elongation ; Energy absorption ; Fatigue cracks ; Fatigue failure ; Fatigue limit ; Fatigue properties ; Fiber lasers ; Fracture mechanics ; Heat affected zone ; High strain rate ; Laser beam welding ; Laser welding ; Lasers ; Martensitic stainless steels ; Mechanical properties ; Microstructure ; QP steels ; Steel ; Strain rate ; Stress concentration ; Striations ; Tempered martensite ; Tensile strength ; Welding</subject><ispartof>Journal of materials processing technology, 2018-06, Vol.256, p.229-238</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</citedby><cites>FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wan, Zhandong</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><creatorcontrib>Jia, Qiang</creatorcontrib><creatorcontrib>Zou, Guisheng</creatorcontrib><creatorcontrib>Peng, Yun</creatorcontrib><title>Microstructure and mechanical properties of fiber laser welded QP980 steel</title><title>Journal of materials processing technology</title><description>The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks.</description><subject>Base metal</subject><subject>Crack propagation</subject><subject>Data analysis</subject><subject>Digital image correlation (DIC)</subject><subject>Ductile fracture</subject><subject>Elongation</subject><subject>Energy absorption</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue limit</subject><subject>Fatigue properties</subject><subject>Fiber lasers</subject><subject>Fracture mechanics</subject><subject>Heat affected zone</subject><subject>High strain rate</subject><subject>Laser beam welding</subject><subject>Laser welding</subject><subject>Lasers</subject><subject>Martensitic stainless steels</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>QP steels</subject><subject>Steel</subject><subject>Strain rate</subject><subject>Stress concentration</subject><subject>Striations</subject><subject>Tempered martensite</subject><subject>Tensile strength</subject><subject>Welding</subject><issn>0924-0136</issn><issn>1873-4774</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwDpY4J6ztJHaOUPGrIkCCs-XaG-EoTYrtgnh7XBWJI5fdy8zszkcIZVAyYM1FX_ZrkzZhSmhLDkyVwEtg9QGZMSVFUUlZHZIZtLwqgInmmJzE2AMwCUrNyMOjt2GKKWxt2gakZnR0jfbdjN6agebcDYbkMdKpo51fYaCDiXl-4eDQ0ZfnVgGNCXE4JUedGSKe_e45ebu5fl3cFcun2_vF5bKwFeOp6JyoVhINF51qsOa25aqWFbboGlD5z4YbwV1dKdnUKKFyjQVjBKudQGg7MSfn-9z83McWY9L9tA1jPqk5yBzAaglZpfaqXb0YsNOb4NcmfGsGekdO9_qPnN6R08B1JpetV3sr5hafHoOO1uNo0fmANmk3-f9DfgDZDnur</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>Guo, Wei</creator><creator>Wan, Zhandong</creator><creator>Peng, Peng</creator><creator>Jia, Qiang</creator><creator>Zou, Guisheng</creator><creator>Peng, Yun</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201806</creationdate><title>Microstructure and mechanical properties of fiber laser welded QP980 steel</title><author>Guo, Wei ; Wan, Zhandong ; Peng, Peng ; Jia, Qiang ; Zou, Guisheng ; Peng, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Base metal</topic><topic>Crack propagation</topic><topic>Data analysis</topic><topic>Digital image correlation (DIC)</topic><topic>Ductile fracture</topic><topic>Elongation</topic><topic>Energy absorption</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue limit</topic><topic>Fatigue properties</topic><topic>Fiber lasers</topic><topic>Fracture mechanics</topic><topic>Heat affected zone</topic><topic>High strain rate</topic><topic>Laser beam welding</topic><topic>Laser welding</topic><topic>Lasers</topic><topic>Martensitic stainless steels</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>QP steels</topic><topic>Steel</topic><topic>Strain rate</topic><topic>Stress concentration</topic><topic>Striations</topic><topic>Tempered martensite</topic><topic>Tensile strength</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wei</creatorcontrib><creatorcontrib>Wan, Zhandong</creatorcontrib><creatorcontrib>Peng, Peng</creatorcontrib><creatorcontrib>Jia, Qiang</creatorcontrib><creatorcontrib>Zou, Guisheng</creatorcontrib><creatorcontrib>Peng, Yun</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials processing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wei</au><au>Wan, Zhandong</au><au>Peng, Peng</au><au>Jia, Qiang</au><au>Zou, Guisheng</au><au>Peng, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and mechanical properties of fiber laser welded QP980 steel</atitle><jtitle>Journal of materials processing technology</jtitle><date>2018-06</date><risdate>2018</risdate><volume>256</volume><spage>229</spage><epage>238</epage><pages>229-238</pages><issn>0924-0136</issn><eissn>1873-4774</eissn><abstract>The fusion zone of laser welded QP980 composed of fully martensitic structure exhibited high hardness (493 Hv). The sub-critical heat affected zone contained partially tempered martensite with a hardness drop (21 Hv). The joints and base metal showed positive strain rate dependent tensile strength, yield strength and energy absorption in dynamic strain rate regime, while elongation responded differently because of thermal softening effect. All the joints failed at base metal showing a typical ductile fracture. Fatigue limit of the joints was lower than that of base metal (171 MPa and 261 MPa, respectively). Fatigue specimens of joints failed at weld area because of their higher sensitivity to stress concentration than base metal. Fatigue crack originated from the specimen surface, and propagated through fatigue striations together with secondary cracks.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jmatprotec.2018.02.015</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-0136
ispartof Journal of materials processing technology, 2018-06, Vol.256, p.229-238
issn 0924-0136
1873-4774
language eng
recordid cdi_proquest_journals_2070921570
source ScienceDirect Freedom Collection 2022-2024
subjects Base metal
Crack propagation
Data analysis
Digital image correlation (DIC)
Ductile fracture
Elongation
Energy absorption
Fatigue cracks
Fatigue failure
Fatigue limit
Fatigue properties
Fiber lasers
Fracture mechanics
Heat affected zone
High strain rate
Laser beam welding
Laser welding
Lasers
Martensitic stainless steels
Mechanical properties
Microstructure
QP steels
Steel
Strain rate
Stress concentration
Striations
Tempered martensite
Tensile strength
Welding
title Microstructure and mechanical properties of fiber laser welded QP980 steel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20mechanical%20properties%20of%20fiber%20laser%20welded%20QP980%20steel&rft.jtitle=Journal%20of%20materials%20processing%20technology&rft.au=Guo,%20Wei&rft.date=2018-06&rft.volume=256&rft.spage=229&rft.epage=238&rft.pages=229-238&rft.issn=0924-0136&rft.eissn=1873-4774&rft_id=info:doi/10.1016/j.jmatprotec.2018.02.015&rft_dat=%3Cproquest_cross%3E2070921570%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-fd34b7ea23f86e52c928574e9ed60809262a32d548765e704d6c0aa315d3e09f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2070921570&rft_id=info:pmid/&rfr_iscdi=true