Loading…
Electron drag in ferromagnetic structures separated by an insulating interface
We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the “active” layer stimulating electric current through this layer. In it...
Saved in:
Published in: | Journal of magnetism and magnetic materials 2018-06, Vol.456, p.257-262 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We consider electron drag in a system of two ferromagnetic layers separated by an insulating interface. The source of it is expected to be magnon-electron interactions. Namely, we assume that the external voltage is applied to the “active” layer stimulating electric current through this layer. In its turn, the scattering of the current-carrying electrons by magnons leads to a magnon drag current within this layer. The 3-magnons interactions between magnons in the two layers (being of non-local nature) lead to magnon drag within the “passive” layer which, correspondingly, produce electron drag current via processes of magnon-electron scattering. We estimate the drag current and compare it to the phonon-induced one. |
---|---|
ISSN: | 0304-8853 1873-4766 |
DOI: | 10.1016/j.jmmm.2018.02.047 |