Loading…

Critical Role for the Microbiota in CX 3 CR1 + Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses

The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, i...

Full description

Saved in:
Bibliographic Details
Published in:Immunity (Cambridge, Mass.) Mass.), 2018-07, Vol.49 (1), p.151
Main Authors: Kim, Myunghoo, Galan, Carolina, Hill, Andrea A, Wu, Wan-Jung, Fehlner-Peach, Hannah, Song, Hyo Won, Schady, Deborah, Bettini, Matthew L, Simpson, Kenneth W, Longman, Randy S, Littman, Dan R, Diehl, Gretchen E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 1
container_start_page 151
container_title Immunity (Cambridge, Mass.)
container_volume 49
creator Kim, Myunghoo
Galan, Carolina
Hill, Andrea A
Wu, Wan-Jung
Fehlner-Peach, Hannah
Song, Hyo Won
Schady, Deborah
Bettini, Matthew L
Simpson, Kenneth W
Longman, Randy S
Littman, Dan R
Diehl, Gretchen E
description The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CX CR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself. We identified that disruption of the microbiota resulted in CX CR1 APC-dependent inflammatory Th1 cell responses with increased pathology after pathogen infection. Colonization with microbes that can adhere to the epithelium was able to compensate for intestinal microbiota loss, indicating that although microbial interactions with the epithelium can be pathogenic, they can also activate homeostatic regulatory mechanisms. Our results identify a cellular mechanism by which the microbiota limits intestinal inflammation and promotes tissue homeostasis.
doi_str_mv 10.1016/j.immuni.2018.05.009
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2071125498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071125498</sourcerecordid><originalsourceid>FETCH-LOGICAL-p121t-d2ee88fe7679b95ccf406baea3c557d43d0f374cde677aae4b57fb514435ea8c3</originalsourceid><addsrcrecordid>eNpNkN9KwzAUh4Mobk7fQCTgpbQmTdK0l1L8M9hQxgTvSpqebhltU5v0Yj6Nz-KTWXGCV-dcfL_f-TgIXVISUkLj211ommZoTRgRmoREhISkR2hKSSoDThNy_LNLHsiYsgk6c25HCOUiJadoEqVpQjiTU_SR9cYbrWq8sjXgyvbYbwEvje5tYaxX2LQ4e8MMZyuKb_C89eC8acfA0ra2HXQNqscvW7Wxeu8Br2Az1Mob22Jb_cfXX58Z1OMdcJ1tHbhzdFKp2sHFYc7Q68P9OnsKFs-P8-xuEXQ0oj4oI4AkqUDGMi1SoXXFSVwoUEwLIUvOSlIxyXUJsZRKAS-ErApBOWcCVKLZDF3_9na9fR9GnXxnh35UcnlEJKWR4GkyUlcHaigaKPOuN43q9_nfq9g3TlduVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071125498</pqid></control><display><type>article</type><title>Critical Role for the Microbiota in CX 3 CR1 + Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Kim, Myunghoo ; Galan, Carolina ; Hill, Andrea A ; Wu, Wan-Jung ; Fehlner-Peach, Hannah ; Song, Hyo Won ; Schady, Deborah ; Bettini, Matthew L ; Simpson, Kenneth W ; Longman, Randy S ; Littman, Dan R ; Diehl, Gretchen E</creator><creatorcontrib>Kim, Myunghoo ; Galan, Carolina ; Hill, Andrea A ; Wu, Wan-Jung ; Fehlner-Peach, Hannah ; Song, Hyo Won ; Schady, Deborah ; Bettini, Matthew L ; Simpson, Kenneth W ; Longman, Randy S ; Littman, Dan R ; Diehl, Gretchen E</creatorcontrib><description>The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CX CR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself. We identified that disruption of the microbiota resulted in CX CR1 APC-dependent inflammatory Th1 cell responses with increased pathology after pathogen infection. Colonization with microbes that can adhere to the epithelium was able to compensate for intestinal microbiota loss, indicating that although microbial interactions with the epithelium can be pathogenic, they can also activate homeostatic regulatory mechanisms. Our results identify a cellular mechanism by which the microbiota limits intestinal inflammation and promotes tissue homeostasis.</description><identifier>ISSN: 1074-7613</identifier><identifier>EISSN: 1097-4180</identifier><identifier>DOI: 10.1016/j.immuni.2018.05.009</identifier><identifier>PMID: 29980437</identifier><language>eng</language><publisher>United States: Elsevier Limited</publisher><subject>Animals ; Antibiotics ; Antigen Presentation ; Antigen-presenting cells ; Antigens ; Bacteria ; Bacterial Adhesion - immunology ; Colonization ; CX3C Chemokine Receptor 1 - metabolism ; CX3CR1 protein ; Disease ; Disease Models, Animal ; Epithelium ; Experiments ; Female ; Gastrointestinal Microbiome - immunology ; Homeostasis ; Immune Tolerance ; Immunity, Mucosal ; Immunoregulation ; Infections ; Inflammation - immunology ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - immunology ; Inflammatory diseases ; Interleukin-10 - immunology ; Interleukin-10 - metabolism ; Intestinal microflora ; Intestinal Mucosa - immunology ; Intestinal Mucosa - microbiology ; Intestine ; Lymphocytes ; Lymphocytes T ; Male ; Mice ; Microbiota ; Microorganisms ; Mononuclear Phagocyte System - immunology ; Pathology ; RAW 264.7 Cells ; Regulatory mechanisms (biology) ; Salmonella ; T cell receptors ; T-Lymphocytes, Regulatory - immunology ; Th1 Cells - immunology ; Ulcers ; Variance analysis</subject><ispartof>Immunity (Cambridge, Mass.), 2018-07, Vol.49 (1), p.151</ispartof><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jul 17, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29980437$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Myunghoo</creatorcontrib><creatorcontrib>Galan, Carolina</creatorcontrib><creatorcontrib>Hill, Andrea A</creatorcontrib><creatorcontrib>Wu, Wan-Jung</creatorcontrib><creatorcontrib>Fehlner-Peach, Hannah</creatorcontrib><creatorcontrib>Song, Hyo Won</creatorcontrib><creatorcontrib>Schady, Deborah</creatorcontrib><creatorcontrib>Bettini, Matthew L</creatorcontrib><creatorcontrib>Simpson, Kenneth W</creatorcontrib><creatorcontrib>Longman, Randy S</creatorcontrib><creatorcontrib>Littman, Dan R</creatorcontrib><creatorcontrib>Diehl, Gretchen E</creatorcontrib><title>Critical Role for the Microbiota in CX 3 CR1 + Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses</title><title>Immunity (Cambridge, Mass.)</title><addtitle>Immunity</addtitle><description>The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CX CR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself. We identified that disruption of the microbiota resulted in CX CR1 APC-dependent inflammatory Th1 cell responses with increased pathology after pathogen infection. Colonization with microbes that can adhere to the epithelium was able to compensate for intestinal microbiota loss, indicating that although microbial interactions with the epithelium can be pathogenic, they can also activate homeostatic regulatory mechanisms. Our results identify a cellular mechanism by which the microbiota limits intestinal inflammation and promotes tissue homeostasis.</description><subject>Animals</subject><subject>Antibiotics</subject><subject>Antigen Presentation</subject><subject>Antigen-presenting cells</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Bacterial Adhesion - immunology</subject><subject>Colonization</subject><subject>CX3C Chemokine Receptor 1 - metabolism</subject><subject>CX3CR1 protein</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>Epithelium</subject><subject>Experiments</subject><subject>Female</subject><subject>Gastrointestinal Microbiome - immunology</subject><subject>Homeostasis</subject><subject>Immune Tolerance</subject><subject>Immunity, Mucosal</subject><subject>Immunoregulation</subject><subject>Infections</subject><subject>Inflammation - immunology</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - immunology</subject><subject>Inflammatory diseases</subject><subject>Interleukin-10 - immunology</subject><subject>Interleukin-10 - metabolism</subject><subject>Intestinal microflora</subject><subject>Intestinal Mucosa - immunology</subject><subject>Intestinal Mucosa - microbiology</subject><subject>Intestine</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Male</subject><subject>Mice</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Mononuclear Phagocyte System - immunology</subject><subject>Pathology</subject><subject>RAW 264.7 Cells</subject><subject>Regulatory mechanisms (biology)</subject><subject>Salmonella</subject><subject>T cell receptors</subject><subject>T-Lymphocytes, Regulatory - immunology</subject><subject>Th1 Cells - immunology</subject><subject>Ulcers</subject><subject>Variance analysis</subject><issn>1074-7613</issn><issn>1097-4180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkN9KwzAUh4Mobk7fQCTgpbQmTdK0l1L8M9hQxgTvSpqebhltU5v0Yj6Nz-KTWXGCV-dcfL_f-TgIXVISUkLj211ommZoTRgRmoREhISkR2hKSSoDThNy_LNLHsiYsgk6c25HCOUiJadoEqVpQjiTU_SR9cYbrWq8sjXgyvbYbwEvje5tYaxX2LQ4e8MMZyuKb_C89eC8acfA0ra2HXQNqscvW7Wxeu8Br2Az1Mob22Jb_cfXX58Z1OMdcJ1tHbhzdFKp2sHFYc7Q68P9OnsKFs-P8-xuEXQ0oj4oI4AkqUDGMi1SoXXFSVwoUEwLIUvOSlIxyXUJsZRKAS-ErApBOWcCVKLZDF3_9na9fR9GnXxnh35UcnlEJKWR4GkyUlcHaigaKPOuN43q9_nfq9g3TlduVg</recordid><startdate>20180717</startdate><enddate>20180717</enddate><creator>Kim, Myunghoo</creator><creator>Galan, Carolina</creator><creator>Hill, Andrea A</creator><creator>Wu, Wan-Jung</creator><creator>Fehlner-Peach, Hannah</creator><creator>Song, Hyo Won</creator><creator>Schady, Deborah</creator><creator>Bettini, Matthew L</creator><creator>Simpson, Kenneth W</creator><creator>Longman, Randy S</creator><creator>Littman, Dan R</creator><creator>Diehl, Gretchen E</creator><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20180717</creationdate><title>Critical Role for the Microbiota in CX 3 CR1 + Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses</title><author>Kim, Myunghoo ; Galan, Carolina ; Hill, Andrea A ; Wu, Wan-Jung ; Fehlner-Peach, Hannah ; Song, Hyo Won ; Schady, Deborah ; Bettini, Matthew L ; Simpson, Kenneth W ; Longman, Randy S ; Littman, Dan R ; Diehl, Gretchen E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p121t-d2ee88fe7679b95ccf406baea3c557d43d0f374cde677aae4b57fb514435ea8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Antibiotics</topic><topic>Antigen Presentation</topic><topic>Antigen-presenting cells</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Bacterial Adhesion - immunology</topic><topic>Colonization</topic><topic>CX3C Chemokine Receptor 1 - metabolism</topic><topic>CX3CR1 protein</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>Epithelium</topic><topic>Experiments</topic><topic>Female</topic><topic>Gastrointestinal Microbiome - immunology</topic><topic>Homeostasis</topic><topic>Immune Tolerance</topic><topic>Immunity, Mucosal</topic><topic>Immunoregulation</topic><topic>Infections</topic><topic>Inflammation - immunology</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - immunology</topic><topic>Inflammatory diseases</topic><topic>Interleukin-10 - immunology</topic><topic>Interleukin-10 - metabolism</topic><topic>Intestinal microflora</topic><topic>Intestinal Mucosa - immunology</topic><topic>Intestinal Mucosa - microbiology</topic><topic>Intestine</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Male</topic><topic>Mice</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Mononuclear Phagocyte System - immunology</topic><topic>Pathology</topic><topic>RAW 264.7 Cells</topic><topic>Regulatory mechanisms (biology)</topic><topic>Salmonella</topic><topic>T cell receptors</topic><topic>T-Lymphocytes, Regulatory - immunology</topic><topic>Th1 Cells - immunology</topic><topic>Ulcers</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Myunghoo</creatorcontrib><creatorcontrib>Galan, Carolina</creatorcontrib><creatorcontrib>Hill, Andrea A</creatorcontrib><creatorcontrib>Wu, Wan-Jung</creatorcontrib><creatorcontrib>Fehlner-Peach, Hannah</creatorcontrib><creatorcontrib>Song, Hyo Won</creatorcontrib><creatorcontrib>Schady, Deborah</creatorcontrib><creatorcontrib>Bettini, Matthew L</creatorcontrib><creatorcontrib>Simpson, Kenneth W</creatorcontrib><creatorcontrib>Longman, Randy S</creatorcontrib><creatorcontrib>Littman, Dan R</creatorcontrib><creatorcontrib>Diehl, Gretchen E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Immunity (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Myunghoo</au><au>Galan, Carolina</au><au>Hill, Andrea A</au><au>Wu, Wan-Jung</au><au>Fehlner-Peach, Hannah</au><au>Song, Hyo Won</au><au>Schady, Deborah</au><au>Bettini, Matthew L</au><au>Simpson, Kenneth W</au><au>Longman, Randy S</au><au>Littman, Dan R</au><au>Diehl, Gretchen E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical Role for the Microbiota in CX 3 CR1 + Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses</atitle><jtitle>Immunity (Cambridge, Mass.)</jtitle><addtitle>Immunity</addtitle><date>2018-07-17</date><risdate>2018</risdate><volume>49</volume><issue>1</issue><spage>151</spage><pages>151-</pages><issn>1074-7613</issn><eissn>1097-4180</eissn><abstract>The intestinal barrier is vulnerable to damage by microbiota-induced inflammation that is normally restrained through mechanisms promoting homeostasis. Such disruptions contribute to autoimmune and inflammatory diseases including inflammatory bowel disease. We identified a regulatory loop whereby, in the presence of the normal microbiota, intestinal antigen-presenting cells (APCs) expressing the chemokine receptor CX CR1 reduced expansion of intestinal microbe-specific T helper 1 (Th1) cells and promoted generation of regulatory T cells responsive to food antigens and the microbiota itself. We identified that disruption of the microbiota resulted in CX CR1 APC-dependent inflammatory Th1 cell responses with increased pathology after pathogen infection. Colonization with microbes that can adhere to the epithelium was able to compensate for intestinal microbiota loss, indicating that although microbial interactions with the epithelium can be pathogenic, they can also activate homeostatic regulatory mechanisms. Our results identify a cellular mechanism by which the microbiota limits intestinal inflammation and promotes tissue homeostasis.</abstract><cop>United States</cop><pub>Elsevier Limited</pub><pmid>29980437</pmid><doi>10.1016/j.immuni.2018.05.009</doi></addata></record>
fulltext fulltext
identifier ISSN: 1074-7613
ispartof Immunity (Cambridge, Mass.), 2018-07, Vol.49 (1), p.151
issn 1074-7613
1097-4180
language eng
recordid cdi_proquest_journals_2071125498
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects Animals
Antibiotics
Antigen Presentation
Antigen-presenting cells
Antigens
Bacteria
Bacterial Adhesion - immunology
Colonization
CX3C Chemokine Receptor 1 - metabolism
CX3CR1 protein
Disease
Disease Models, Animal
Epithelium
Experiments
Female
Gastrointestinal Microbiome - immunology
Homeostasis
Immune Tolerance
Immunity, Mucosal
Immunoregulation
Infections
Inflammation - immunology
Inflammatory bowel disease
Inflammatory bowel diseases
Inflammatory Bowel Diseases - immunology
Inflammatory diseases
Interleukin-10 - immunology
Interleukin-10 - metabolism
Intestinal microflora
Intestinal Mucosa - immunology
Intestinal Mucosa - microbiology
Intestine
Lymphocytes
Lymphocytes T
Male
Mice
Microbiota
Microorganisms
Mononuclear Phagocyte System - immunology
Pathology
RAW 264.7 Cells
Regulatory mechanisms (biology)
Salmonella
T cell receptors
T-Lymphocytes, Regulatory - immunology
Th1 Cells - immunology
Ulcers
Variance analysis
title Critical Role for the Microbiota in CX 3 CR1 + Intestinal Mononuclear Phagocyte Regulation of Intestinal T Cell Responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20Role%20for%20the%20Microbiota%20in%20CX%203%20CR1%20+%20Intestinal%20Mononuclear%20Phagocyte%20Regulation%20of%20Intestinal%20T%C2%A0Cell%20Responses&rft.jtitle=Immunity%20(Cambridge,%20Mass.)&rft.au=Kim,%20Myunghoo&rft.date=2018-07-17&rft.volume=49&rft.issue=1&rft.spage=151&rft.pages=151-&rft.issn=1074-7613&rft.eissn=1097-4180&rft_id=info:doi/10.1016/j.immuni.2018.05.009&rft_dat=%3Cproquest_pubme%3E2071125498%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p121t-d2ee88fe7679b95ccf406baea3c557d43d0f374cde677aae4b57fb514435ea8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071125498&rft_id=info:pmid/29980437&rfr_iscdi=true