Loading…

Shear-stress fluctuations and relaxation in polymer glasses

We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time \(\Delta t\). The linear response is characterized using (ensemble-averaged) expectation v...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-11
Main Authors: Kriuchevskyi, I, Wittmer, J P, Meyer, H, Benzerara, O, Baschnagel, J
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kriuchevskyi, I
Wittmer, J P
Meyer, H
Benzerara, O
Baschnagel, J
description We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time \(\Delta t\). The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time-averaged for each shear plane) to the stress-fluctuation relation \(\mu_{sf}\) for the shear modulus and the shear-stress relaxation modulus \(G(t)\). Using 100 independent configurations we pay attention to the respective standard deviations. While the ensemble-averaged modulus \(\mu_{sf}(T)\) decreases continuously with increasing T for all \(\Delta t\) sampled, its standard deviation \(\delta \mu_{sf}(T)\) is non-monotonous with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump-singularity at the glass transition is thus ill-posed. Confirming the effective time-translational invariance of our systems, the \(\Delta t\)-dependence of \(\mu_{sf}\) and related quantities can be understood using a weighted integral over \(G(t)\). This implies that the shear viscosity \(\eta(T)\) may be readily obtained from the \(1/\Delta t\)-decay of \(\mu_{sf}\) above the glass transition.
doi_str_mv 10.48550/arxiv.1711.00725
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071255560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071255560</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-dccdbdf772c25c670e65a8794968d5022fbe2dd7a6fddecf5d1b691e4db2f6aa3</originalsourceid><addsrcrecordid>eNotj01Lw0AURQdBaKn9Ad0NuE5885KZSXAlxS8ouLD78jLzRlNiUmcSqf_eoK4ulwP3cIXYKMjLSmu4oXhuv3JllcoBLOoLscSiUFlVIi7EOqUjAKCZiS6W4vb1nSlmaYyckgzd5MaJxnbok6Tey8gdnX-7bHt5GrrvD47yraOUOF2Jy0Bd4vV_rsT-4X6_fcp2L4_P27tdRhoh8875xgdr0aF2xgIbTZWty9pUXgNiaBi9t2SC9-yC9qoxteLSNxgMUbES13-zpzh8TpzGw3GYYj8bDwhWzT-0geIHhaZK7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071255560</pqid></control><display><type>article</type><title>Shear-stress fluctuations and relaxation in polymer glasses</title><source>Publicly Available Content Database</source><creator>Kriuchevskyi, I ; Wittmer, J P ; Meyer, H ; Benzerara, O ; Baschnagel, J</creator><creatorcontrib>Kriuchevskyi, I ; Wittmer, J P ; Meyer, H ; Benzerara, O ; Baschnagel, J</creatorcontrib><description>We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time \(\Delta t\). The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time-averaged for each shear plane) to the stress-fluctuation relation \(\mu_{sf}\) for the shear modulus and the shear-stress relaxation modulus \(G(t)\). Using 100 independent configurations we pay attention to the respective standard deviations. While the ensemble-averaged modulus \(\mu_{sf}(T)\) decreases continuously with increasing T for all \(\Delta t\) sampled, its standard deviation \(\delta \mu_{sf}(T)\) is non-monotonous with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump-singularity at the glass transition is thus ill-posed. Confirming the effective time-translational invariance of our systems, the \(\Delta t\)-dependence of \(\mu_{sf}\) and related quantities can be understood using a weighted integral over \(G(t)\). This implies that the shear viscosity \(\eta(T)\) may be readily obtained from the \(1/\Delta t\)-decay of \(\mu_{sf}\) above the glass transition.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1711.00725</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Dependence ; Glass ; Ill posed problems ; Molecular dynamics ; Polymers ; Shear modulus ; Shear stress ; Shear viscosity ; Stress relaxation ; System effectiveness ; Variation</subject><ispartof>arXiv.org, 2017-11</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071255560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kriuchevskyi, I</creatorcontrib><creatorcontrib>Wittmer, J P</creatorcontrib><creatorcontrib>Meyer, H</creatorcontrib><creatorcontrib>Benzerara, O</creatorcontrib><creatorcontrib>Baschnagel, J</creatorcontrib><title>Shear-stress fluctuations and relaxation in polymer glasses</title><title>arXiv.org</title><description>We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time \(\Delta t\). The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time-averaged for each shear plane) to the stress-fluctuation relation \(\mu_{sf}\) for the shear modulus and the shear-stress relaxation modulus \(G(t)\). Using 100 independent configurations we pay attention to the respective standard deviations. While the ensemble-averaged modulus \(\mu_{sf}(T)\) decreases continuously with increasing T for all \(\Delta t\) sampled, its standard deviation \(\delta \mu_{sf}(T)\) is non-monotonous with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump-singularity at the glass transition is thus ill-posed. Confirming the effective time-translational invariance of our systems, the \(\Delta t\)-dependence of \(\mu_{sf}\) and related quantities can be understood using a weighted integral over \(G(t)\). This implies that the shear viscosity \(\eta(T)\) may be readily obtained from the \(1/\Delta t\)-decay of \(\mu_{sf}\) above the glass transition.</description><subject>Computer simulation</subject><subject>Dependence</subject><subject>Glass</subject><subject>Ill posed problems</subject><subject>Molecular dynamics</subject><subject>Polymers</subject><subject>Shear modulus</subject><subject>Shear stress</subject><subject>Shear viscosity</subject><subject>Stress relaxation</subject><subject>System effectiveness</subject><subject>Variation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01Lw0AURQdBaKn9Ad0NuE5885KZSXAlxS8ouLD78jLzRlNiUmcSqf_eoK4ulwP3cIXYKMjLSmu4oXhuv3JllcoBLOoLscSiUFlVIi7EOqUjAKCZiS6W4vb1nSlmaYyckgzd5MaJxnbok6Tey8gdnX-7bHt5GrrvD47yraOUOF2Jy0Bd4vV_rsT-4X6_fcp2L4_P27tdRhoh8875xgdr0aF2xgIbTZWty9pUXgNiaBi9t2SC9-yC9qoxteLSNxgMUbES13-zpzh8TpzGw3GYYj8bDwhWzT-0geIHhaZK7A</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Kriuchevskyi, I</creator><creator>Wittmer, J P</creator><creator>Meyer, H</creator><creator>Benzerara, O</creator><creator>Baschnagel, J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20171102</creationdate><title>Shear-stress fluctuations and relaxation in polymer glasses</title><author>Kriuchevskyi, I ; Wittmer, J P ; Meyer, H ; Benzerara, O ; Baschnagel, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-dccdbdf772c25c670e65a8794968d5022fbe2dd7a6fddecf5d1b691e4db2f6aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer simulation</topic><topic>Dependence</topic><topic>Glass</topic><topic>Ill posed problems</topic><topic>Molecular dynamics</topic><topic>Polymers</topic><topic>Shear modulus</topic><topic>Shear stress</topic><topic>Shear viscosity</topic><topic>Stress relaxation</topic><topic>System effectiveness</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kriuchevskyi, I</creatorcontrib><creatorcontrib>Wittmer, J P</creatorcontrib><creatorcontrib>Meyer, H</creatorcontrib><creatorcontrib>Benzerara, O</creatorcontrib><creatorcontrib>Baschnagel, J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kriuchevskyi, I</au><au>Wittmer, J P</au><au>Meyer, H</au><au>Benzerara, O</au><au>Baschnagel, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear-stress fluctuations and relaxation in polymer glasses</atitle><jtitle>arXiv.org</jtitle><date>2017-11-02</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We investigate by means of molecular dynamics simulation a coarse-grained polymer glass model focusing on (quasi-static and dynamical) shear-stress fluctuations as a function of temperature T and sampling time \(\Delta t\). The linear response is characterized using (ensemble-averaged) expectation values of the contributions (time-averaged for each shear plane) to the stress-fluctuation relation \(\mu_{sf}\) for the shear modulus and the shear-stress relaxation modulus \(G(t)\). Using 100 independent configurations we pay attention to the respective standard deviations. While the ensemble-averaged modulus \(\mu_{sf}(T)\) decreases continuously with increasing T for all \(\Delta t\) sampled, its standard deviation \(\delta \mu_{sf}(T)\) is non-monotonous with a striking peak at the glass transition. The question of whether the shear modulus is continuous or has a jump-singularity at the glass transition is thus ill-posed. Confirming the effective time-translational invariance of our systems, the \(\Delta t\)-dependence of \(\mu_{sf}\) and related quantities can be understood using a weighted integral over \(G(t)\). This implies that the shear viscosity \(\eta(T)\) may be readily obtained from the \(1/\Delta t\)-decay of \(\mu_{sf}\) above the glass transition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1711.00725</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071255560
source Publicly Available Content Database
subjects Computer simulation
Dependence
Glass
Ill posed problems
Molecular dynamics
Polymers
Shear modulus
Shear stress
Shear viscosity
Stress relaxation
System effectiveness
Variation
title Shear-stress fluctuations and relaxation in polymer glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A38%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear-stress%20fluctuations%20and%20relaxation%20in%20polymer%20glasses&rft.jtitle=arXiv.org&rft.au=Kriuchevskyi,%20I&rft.date=2017-11-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1711.00725&rft_dat=%3Cproquest%3E2071255560%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-dccdbdf772c25c670e65a8794968d5022fbe2dd7a6fddecf5d1b691e4db2f6aa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071255560&rft_id=info:pmid/&rfr_iscdi=true