Loading…
Cross-stream migration of active particles
For natural microswimmers, the interplay of swimming activity and external flow can promote robust motion, e.g. propulsion against ("upstream rheotaxis") or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patter...
Saved in:
Published in: | arXiv.org 2018-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Katuri, Jaideep Uspal, William E Simmchen, Juliane Miguel-López, Albert Sánchez, Samuel |
description | For natural microswimmers, the interplay of swimming activity and external flow can promote robust motion, e.g. propulsion against ("upstream rheotaxis") or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model experimental system, we report on a strong directional response that occurs for spherical active particles in a channel flow. The particles align their propulsion axes to be nearly perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model of spherical microswimmers near a planar wall that captures the experimental observations. We show how the directional response emerges from the interplay of shear flow and near-surface swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that semi-quantitatively agree with the experimental distributions. |
doi_str_mv | 10.48550/arxiv.1706.06817 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071292702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071292702</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-dd89b58c4504ed55b693c732fb56b78a61659cbf1148633ea970d95c1ee0eb7c3</originalsourceid><addsrcrecordid>eNotzctKAzEUgOEgCJbaB3A34E7IeHKSk8tSBm9QcNN9STIZSWmbmkyLj6-gq3_3_YzdCeiVJYJHX7_zpRcGdA_aCnPFFiil4FYh3rBVazsAQG2QSC7Yw1BLa7zNNflDd8if1c-5HLsydT7O-ZK6k69zjvvUbtn15Pctrf67ZJuX583wxtcfr-_D05p7QuTjaF0gGxWBSiNR0E5GI3EKpIOxXgtNLoZJCGW1lMk7A6OjKFKCFEyUS3b_x55q-TqnNm935VyPv8ctghHo0ADKH00dQrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071292702</pqid></control><display><type>article</type><title>Cross-stream migration of active particles</title><source>ProQuest - Publicly Available Content Database</source><creator>Katuri, Jaideep ; Uspal, William E ; Simmchen, Juliane ; Miguel-López, Albert ; Sánchez, Samuel</creator><creatorcontrib>Katuri, Jaideep ; Uspal, William E ; Simmchen, Juliane ; Miguel-López, Albert ; Sánchez, Samuel</creatorcontrib><description>For natural microswimmers, the interplay of swimming activity and external flow can promote robust motion, e.g. propulsion against ("upstream rheotaxis") or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model experimental system, we report on a strong directional response that occurs for spherical active particles in a channel flow. The particles align their propulsion axes to be nearly perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model of spherical microswimmers near a planar wall that captures the experimental observations. We show how the directional response emerges from the interplay of shear flow and near-surface swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that semi-quantitatively agree with the experimental distributions.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1706.06817</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Catalysis ; Channel flow ; Migration ; Nanoparticles ; Shear flow ; Swimming ; Thermal noise</subject><ispartof>arXiv.org, 2018-01</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071292702?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Katuri, Jaideep</creatorcontrib><creatorcontrib>Uspal, William E</creatorcontrib><creatorcontrib>Simmchen, Juliane</creatorcontrib><creatorcontrib>Miguel-López, Albert</creatorcontrib><creatorcontrib>Sánchez, Samuel</creatorcontrib><title>Cross-stream migration of active particles</title><title>arXiv.org</title><description>For natural microswimmers, the interplay of swimming activity and external flow can promote robust motion, e.g. propulsion against ("upstream rheotaxis") or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model experimental system, we report on a strong directional response that occurs for spherical active particles in a channel flow. The particles align their propulsion axes to be nearly perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model of spherical microswimmers near a planar wall that captures the experimental observations. We show how the directional response emerges from the interplay of shear flow and near-surface swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that semi-quantitatively agree with the experimental distributions.</description><subject>Catalysis</subject><subject>Channel flow</subject><subject>Migration</subject><subject>Nanoparticles</subject><subject>Shear flow</subject><subject>Swimming</subject><subject>Thermal noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzctKAzEUgOEgCJbaB3A34E7IeHKSk8tSBm9QcNN9STIZSWmbmkyLj6-gq3_3_YzdCeiVJYJHX7_zpRcGdA_aCnPFFiil4FYh3rBVazsAQG2QSC7Yw1BLa7zNNflDd8if1c-5HLsydT7O-ZK6k69zjvvUbtn15Pctrf67ZJuX583wxtcfr-_D05p7QuTjaF0gGxWBSiNR0E5GI3EKpIOxXgtNLoZJCGW1lMk7A6OjKFKCFEyUS3b_x55q-TqnNm935VyPv8ctghHo0ADKH00dQrY</recordid><startdate>20180129</startdate><enddate>20180129</enddate><creator>Katuri, Jaideep</creator><creator>Uspal, William E</creator><creator>Simmchen, Juliane</creator><creator>Miguel-López, Albert</creator><creator>Sánchez, Samuel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180129</creationdate><title>Cross-stream migration of active particles</title><author>Katuri, Jaideep ; Uspal, William E ; Simmchen, Juliane ; Miguel-López, Albert ; Sánchez, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-dd89b58c4504ed55b693c732fb56b78a61659cbf1148633ea970d95c1ee0eb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Catalysis</topic><topic>Channel flow</topic><topic>Migration</topic><topic>Nanoparticles</topic><topic>Shear flow</topic><topic>Swimming</topic><topic>Thermal noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Katuri, Jaideep</creatorcontrib><creatorcontrib>Uspal, William E</creatorcontrib><creatorcontrib>Simmchen, Juliane</creatorcontrib><creatorcontrib>Miguel-López, Albert</creatorcontrib><creatorcontrib>Sánchez, Samuel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katuri, Jaideep</au><au>Uspal, William E</au><au>Simmchen, Juliane</au><au>Miguel-López, Albert</au><au>Sánchez, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-stream migration of active particles</atitle><jtitle>arXiv.org</jtitle><date>2018-01-29</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>For natural microswimmers, the interplay of swimming activity and external flow can promote robust motion, e.g. propulsion against ("upstream rheotaxis") or perpendicular to the direction of flow. These effects are generally attributed to their complex body shapes and flagellar beat patterns. Here, using catalytic Janus particles as a model experimental system, we report on a strong directional response that occurs for spherical active particles in a channel flow. The particles align their propulsion axes to be nearly perpendicular to both the direction of flow and the normal vector of a nearby bounding surface. We develop a deterministic theoretical model of spherical microswimmers near a planar wall that captures the experimental observations. We show how the directional response emerges from the interplay of shear flow and near-surface swimming activity. Finally, adding the effect of thermal noise, we obtain probability distributions for the swimmer orientation that semi-quantitatively agree with the experimental distributions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1706.06817</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071292702 |
source | ProQuest - Publicly Available Content Database |
subjects | Catalysis Channel flow Migration Nanoparticles Shear flow Swimming Thermal noise |
title | Cross-stream migration of active particles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-stream%20migration%20of%20active%20particles&rft.jtitle=arXiv.org&rft.au=Katuri,%20Jaideep&rft.date=2018-01-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1706.06817&rft_dat=%3Cproquest%3E2071292702%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-dd89b58c4504ed55b693c732fb56b78a61659cbf1148633ea970d95c1ee0eb7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071292702&rft_id=info:pmid/&rfr_iscdi=true |