Loading…
Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures
In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretiza...
Saved in:
Published in: | Computer methods in applied mechanics and engineering 2018-06, Vol.335, p.298-326 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123 |
container_end_page | 326 |
container_issue | |
container_start_page | 298 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 335 |
creator | Schillinger, Dominik Gangwar, Tarun Gilmanov, Anvar Heuschele, Jo D. Stolarski, Henryk K. |
description | In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.
•We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure. |
doi_str_mv | 10.1016/j.cma.2018.02.029 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2071307269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782518301099</els_id><sourcerecordid>2071307269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIHcLPElRQ_EieBE0K8pEoc4G75sQGXNA62g9Qb_8Af8iW4KmdWI-1hZ3ZGg9ApJQtKqLhYLcxaLRihzYKwjHYPzWhTtwWjvNlHM0LKqqgbVh2ioxhXJE9D2QxtbtcarAWL4xv0Pe7c4BJg6GENQ4qX-Nn3zv58fe_ObkgQlEnOD-c4TqFTBnDvzbsbXs-xGixW49g7o7YMnDx2a_UKhVYxO2jni5jCZNIUIB6jg071EU7-9hy93N2-3DwUy6f7x5vrZWG4aFJRi9pyrRW1ggIjFe_KTnSqoqZRWllhKwqloZyVdUVaDZpD13Jdi9IISxmfo7Pd2zH4jwlikis_hSE7SkZqyknNRJtZdMcywccYoJNjyNHDRlIitwXLlcwFy23BkrCMreZqp4Gc_tNBkNE4GAxYF8Akab37R_0LmdmGMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071307269</pqid></control><display><type>article</type><title>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Schillinger, Dominik ; Gangwar, Tarun ; Gilmanov, Anvar ; Heuschele, Jo D. ; Stolarski, Henryk K.</creator><creatorcontrib>Schillinger, Dominik ; Gangwar, Tarun ; Gilmanov, Anvar ; Heuschele, Jo D. ; Stolarski, Henryk K.</creatorcontrib><description>In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.
•We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2018.02.029</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary value problems ; Discretization ; Embedded shell finite elements ; Embedded systems ; Embedding ; Finite element analysis ; Finite element method ; Lagrange multiplier ; Locking ; Polynomials ; Reduced quadrature ; Rotation-free shell formulation ; Solid–shell interaction ; Stress ; Surface locking ; Surface stability ; Voxel finite elements</subject><ispartof>Computer methods in applied mechanics and engineering, 2018-06, Vol.335, p.298-326</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</citedby><cites>FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</cites><orcidid>0000-0002-9068-6311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schillinger, Dominik</creatorcontrib><creatorcontrib>Gangwar, Tarun</creatorcontrib><creatorcontrib>Gilmanov, Anvar</creatorcontrib><creatorcontrib>Heuschele, Jo D.</creatorcontrib><creatorcontrib>Stolarski, Henryk K.</creatorcontrib><title>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</title><title>Computer methods in applied mechanics and engineering</title><description>In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.
•We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.</description><subject>Boundary value problems</subject><subject>Discretization</subject><subject>Embedded shell finite elements</subject><subject>Embedded systems</subject><subject>Embedding</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Lagrange multiplier</subject><subject>Locking</subject><subject>Polynomials</subject><subject>Reduced quadrature</subject><subject>Rotation-free shell formulation</subject><subject>Solid–shell interaction</subject><subject>Stress</subject><subject>Surface locking</subject><subject>Surface stability</subject><subject>Voxel finite elements</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIHcLPElRQ_EieBE0K8pEoc4G75sQGXNA62g9Qb_8Af8iW4KmdWI-1hZ3ZGg9ApJQtKqLhYLcxaLRihzYKwjHYPzWhTtwWjvNlHM0LKqqgbVh2ioxhXJE9D2QxtbtcarAWL4xv0Pe7c4BJg6GENQ4qX-Nn3zv58fe_ObkgQlEnOD-c4TqFTBnDvzbsbXs-xGixW49g7o7YMnDx2a_UKhVYxO2jni5jCZNIUIB6jg071EU7-9hy93N2-3DwUy6f7x5vrZWG4aFJRi9pyrRW1ggIjFe_KTnSqoqZRWllhKwqloZyVdUVaDZpD13Jdi9IISxmfo7Pd2zH4jwlikis_hSE7SkZqyknNRJtZdMcywccYoJNjyNHDRlIitwXLlcwFy23BkrCMreZqp4Gc_tNBkNE4GAxYF8Akab37R_0LmdmGMw</recordid><startdate>20180615</startdate><enddate>20180615</enddate><creator>Schillinger, Dominik</creator><creator>Gangwar, Tarun</creator><creator>Gilmanov, Anvar</creator><creator>Heuschele, Jo D.</creator><creator>Stolarski, Henryk K.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9068-6311</orcidid></search><sort><creationdate>20180615</creationdate><title>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</title><author>Schillinger, Dominik ; Gangwar, Tarun ; Gilmanov, Anvar ; Heuschele, Jo D. ; Stolarski, Henryk K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary value problems</topic><topic>Discretization</topic><topic>Embedded shell finite elements</topic><topic>Embedded systems</topic><topic>Embedding</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Lagrange multiplier</topic><topic>Locking</topic><topic>Polynomials</topic><topic>Reduced quadrature</topic><topic>Rotation-free shell formulation</topic><topic>Solid–shell interaction</topic><topic>Stress</topic><topic>Surface locking</topic><topic>Surface stability</topic><topic>Voxel finite elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schillinger, Dominik</creatorcontrib><creatorcontrib>Gangwar, Tarun</creatorcontrib><creatorcontrib>Gilmanov, Anvar</creatorcontrib><creatorcontrib>Heuschele, Jo D.</creatorcontrib><creatorcontrib>Stolarski, Henryk K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schillinger, Dominik</au><au>Gangwar, Tarun</au><au>Gilmanov, Anvar</au><au>Heuschele, Jo D.</au><au>Stolarski, Henryk K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2018-06-15</date><risdate>2018</risdate><volume>335</volume><spage>298</spage><epage>326</epage><pages>298-326</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this article, we explore an embedded shell finite element method for the unfitted discretization of solid–shell interaction problems. Its core component is a variationally consistent approach that couples a shell discretization on the surface of an embedded solid domain to its unfitted discretization with hexahedral solid elements. Derived via an augmented Lagrangian formulation and the formal elimination of interface Lagrange multipliers, our method depends only on displacement variables, facilitated by a shift of the displacement-dependent traction vector entirely to the solid structure. We demonstrate that the weighted least squares term required for stability of the formulation triggers severe surface locking due to a mismatch in the polynomial spaces of the shell element and the embedding solid element. We show that reduced quadrature of the stabilization term that evaluates the kinematic constraint at the nodes of the embedded shell elements completely mitigates surface locking. For coarse discretizations, our variationally consistent method achieves superior accuracy with respect to a locking-free nodal penalty method. We illustrate the versatility of embedded shell finite elements for image-based analysis, including patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.
•We couple a shell mesh on the surface of an embedded solid domain to its unfitted volumetric mesh.•The variationally consistent formulation depends only on displacement variables.•Its stabilization term triggers surface locking due to a polynomial mismatch between shell and solid elements.•Reduced quadrature of the stabilization term mitigates surface locking.•We present two use cases: patient-specific stress prediction in a vertebra and local rind buckling in a plant structure.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2018.02.029</doi><tpages>29</tpages><orcidid>https://orcid.org/0000-0002-9068-6311</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2018-06, Vol.335, p.298-326 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2071307269 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Boundary value problems Discretization Embedded shell finite elements Embedded systems Embedding Finite element analysis Finite element method Lagrange multiplier Locking Polynomials Reduced quadrature Rotation-free shell formulation Solid–shell interaction Stress Surface locking Surface stability Voxel finite elements |
title | Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A55%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20shell%20finite%20elements:%20Solid%E2%80%93shell%20interaction,%20surface%20locking,%20and%20application%20to%20image-based%20bio-structures&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Schillinger,%20Dominik&rft.date=2018-06-15&rft.volume=335&rft.spage=298&rft.epage=326&rft.pages=298-326&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2018.02.029&rft_dat=%3Cproquest_cross%3E2071307269%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-767d3bba1d61e2053f4f6fa51c8abad6d51e4c13247509beb3ef93b764c6d123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071307269&rft_id=info:pmid/&rfr_iscdi=true |