Loading…

DeepProcess: Supporting business process execution using a MANN-based recommender system

Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for cons...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-11
Main Authors: Khan, Asjad, Le, Hung, Do, Kien, Tran, Truyen, Ghose, Aditya, Dam, Hoa, Sindhgatta, Renuka
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Khan, Asjad
Le, Hung
Do, Kien
Tran, Truyen
Ghose, Aditya
Dam, Hoa
Sindhgatta, Renuka
description Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071310352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071310352</sourcerecordid><originalsourceid>FETCH-proquest_journals_20713103523</originalsourceid><addsrcrecordid>eNqNzMsKwjAUBNAgCBbtP1xwXUgTa8Wd-MCNIujCXenjWlpsEnMT0L-3oh_gamDOMAMWCCnjaDETYsRCopZzLuapSBIZsOsG0ZysLpFoCWdvjLauUTUUnhrVl2C-CPjE0rtGK_hIDTkcVsdjVOSEFVgsddehqtACvchhN2HDW34nDH85ZtPd9rLeR_3fwyO5rNXeqp4ywdNYxlwmQv63egPoKkJR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071310352</pqid></control><display><type>article</type><title>DeepProcess: Supporting business process execution using a MANN-based recommender system</title><source>Publicly Available Content Database</source><creator>Khan, Asjad ; Le, Hung ; Do, Kien ; Tran, Truyen ; Ghose, Aditya ; Dam, Hoa ; Sindhgatta, Renuka</creator><creatorcontrib>Khan, Asjad ; Le, Hung ; Do, Kien ; Tran, Truyen ; Ghose, Aditya ; Dam, Hoa ; Sindhgatta, Renuka</creatorcontrib><description>Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytics ; Decoding ; Machine learning ; Mathematical analysis ; Neural networks ; Predictions ; Recommender systems</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071310352?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Khan, Asjad</creatorcontrib><creatorcontrib>Le, Hung</creatorcontrib><creatorcontrib>Do, Kien</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Ghose, Aditya</creatorcontrib><creatorcontrib>Dam, Hoa</creatorcontrib><creatorcontrib>Sindhgatta, Renuka</creatorcontrib><title>DeepProcess: Supporting business process execution using a MANN-based recommender system</title><title>arXiv.org</title><description>Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.</description><subject>Analytics</subject><subject>Decoding</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzMsKwjAUBNAgCBbtP1xwXUgTa8Wd-MCNIujCXenjWlpsEnMT0L-3oh_gamDOMAMWCCnjaDETYsRCopZzLuapSBIZsOsG0ZysLpFoCWdvjLauUTUUnhrVl2C-CPjE0rtGK_hIDTkcVsdjVOSEFVgsddehqtACvchhN2HDW34nDH85ZtPd9rLeR_3fwyO5rNXeqp4ywdNYxlwmQv63egPoKkJR</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Khan, Asjad</creator><creator>Le, Hung</creator><creator>Do, Kien</creator><creator>Tran, Truyen</creator><creator>Ghose, Aditya</creator><creator>Dam, Hoa</creator><creator>Sindhgatta, Renuka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211123</creationdate><title>DeepProcess: Supporting business process execution using a MANN-based recommender system</title><author>Khan, Asjad ; Le, Hung ; Do, Kien ; Tran, Truyen ; Ghose, Aditya ; Dam, Hoa ; Sindhgatta, Renuka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20713103523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytics</topic><topic>Decoding</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Asjad</creatorcontrib><creatorcontrib>Le, Hung</creatorcontrib><creatorcontrib>Do, Kien</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Ghose, Aditya</creatorcontrib><creatorcontrib>Dam, Hoa</creatorcontrib><creatorcontrib>Sindhgatta, Renuka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Asjad</au><au>Le, Hung</au><au>Do, Kien</au><au>Tran, Truyen</au><au>Ghose, Aditya</au><au>Dam, Hoa</au><au>Sindhgatta, Renuka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DeepProcess: Supporting business process execution using a MANN-based recommender system</atitle><jtitle>arXiv.org</jtitle><date>2021-11-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071310352
source Publicly Available Content Database
subjects Analytics
Decoding
Machine learning
Mathematical analysis
Neural networks
Predictions
Recommender systems
title DeepProcess: Supporting business process execution using a MANN-based recommender system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DeepProcess:%20Supporting%20business%20process%20execution%20using%20a%20MANN-based%20recommender%20system&rft.jtitle=arXiv.org&rft.au=Khan,%20Asjad&rft.date=2021-11-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071310352%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20713103523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071310352&rft_id=info:pmid/&rfr_iscdi=true