Loading…
DeepProcess: Supporting business process execution using a MANN-based recommender system
Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for cons...
Saved in:
Published in: | arXiv.org 2021-11 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Khan, Asjad Le, Hung Do, Kien Tran, Truyen Ghose, Aditya Dam, Hoa Sindhgatta, Renuka |
description | Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071310352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071310352</sourcerecordid><originalsourceid>FETCH-proquest_journals_20713103523</originalsourceid><addsrcrecordid>eNqNzMsKwjAUBNAgCBbtP1xwXUgTa8Wd-MCNIujCXenjWlpsEnMT0L-3oh_gamDOMAMWCCnjaDETYsRCopZzLuapSBIZsOsG0ZysLpFoCWdvjLauUTUUnhrVl2C-CPjE0rtGK_hIDTkcVsdjVOSEFVgsddehqtACvchhN2HDW34nDH85ZtPd9rLeR_3fwyO5rNXeqp4ywdNYxlwmQv63egPoKkJR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071310352</pqid></control><display><type>article</type><title>DeepProcess: Supporting business process execution using a MANN-based recommender system</title><source>Publicly Available Content Database</source><creator>Khan, Asjad ; Le, Hung ; Do, Kien ; Tran, Truyen ; Ghose, Aditya ; Dam, Hoa ; Sindhgatta, Renuka</creator><creatorcontrib>Khan, Asjad ; Le, Hung ; Do, Kien ; Tran, Truyen ; Ghose, Aditya ; Dam, Hoa ; Sindhgatta, Renuka</creatorcontrib><description>Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Analytics ; Decoding ; Machine learning ; Mathematical analysis ; Neural networks ; Predictions ; Recommender systems</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071310352?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Khan, Asjad</creatorcontrib><creatorcontrib>Le, Hung</creatorcontrib><creatorcontrib>Do, Kien</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Ghose, Aditya</creatorcontrib><creatorcontrib>Dam, Hoa</creatorcontrib><creatorcontrib>Sindhgatta, Renuka</creatorcontrib><title>DeepProcess: Supporting business process execution using a MANN-based recommender system</title><title>arXiv.org</title><description>Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.</description><subject>Analytics</subject><subject>Decoding</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Predictions</subject><subject>Recommender systems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNzMsKwjAUBNAgCBbtP1xwXUgTa8Wd-MCNIujCXenjWlpsEnMT0L-3oh_gamDOMAMWCCnjaDETYsRCopZzLuapSBIZsOsG0ZysLpFoCWdvjLauUTUUnhrVl2C-CPjE0rtGK_hIDTkcVsdjVOSEFVgsddehqtACvchhN2HDW34nDH85ZtPd9rLeR_3fwyO5rNXeqp4ywdNYxlwmQv63egPoKkJR</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Khan, Asjad</creator><creator>Le, Hung</creator><creator>Do, Kien</creator><creator>Tran, Truyen</creator><creator>Ghose, Aditya</creator><creator>Dam, Hoa</creator><creator>Sindhgatta, Renuka</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211123</creationdate><title>DeepProcess: Supporting business process execution using a MANN-based recommender system</title><author>Khan, Asjad ; Le, Hung ; Do, Kien ; Tran, Truyen ; Ghose, Aditya ; Dam, Hoa ; Sindhgatta, Renuka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20713103523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytics</topic><topic>Decoding</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Predictions</topic><topic>Recommender systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Khan, Asjad</creatorcontrib><creatorcontrib>Le, Hung</creatorcontrib><creatorcontrib>Do, Kien</creatorcontrib><creatorcontrib>Tran, Truyen</creatorcontrib><creatorcontrib>Ghose, Aditya</creatorcontrib><creatorcontrib>Dam, Hoa</creatorcontrib><creatorcontrib>Sindhgatta, Renuka</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Asjad</au><au>Le, Hung</au><au>Do, Kien</au><au>Tran, Truyen</au><au>Ghose, Aditya</au><au>Dam, Hoa</au><au>Sindhgatta, Renuka</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>DeepProcess: Supporting business process execution using a MANN-based recommender system</atitle><jtitle>arXiv.org</jtitle><date>2021-11-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Process-aware Recommender systems can provide critical decision support functionality to aid business process execution by recommending what actions to take next. Based on recent advances in the field of deep learning, we present a novel memory-augmented neural network (MANN) based approach for constructing a process-aware recommender system. We propose a novel network architecture, namely Write-Protected Dual Controller Memory-Augmented Neural Network (DCw-MANN), for building prescriptive models. To evaluate the feasibility and usefulness of our approach, we consider three real-world datasets and show that our approach leads to better performance on several baselines for the task of suffix recommendation and next task prediction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071310352 |
source | Publicly Available Content Database |
subjects | Analytics Decoding Machine learning Mathematical analysis Neural networks Predictions Recommender systems |
title | DeepProcess: Supporting business process execution using a MANN-based recommender system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T13%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=DeepProcess:%20Supporting%20business%20process%20execution%20using%20a%20MANN-based%20recommender%20system&rft.jtitle=arXiv.org&rft.au=Khan,%20Asjad&rft.date=2021-11-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071310352%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20713103523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071310352&rft_id=info:pmid/&rfr_iscdi=true |