Loading…

Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor

We built and characterised a macroscopic self-assembly reactor that agitates magnetic, centimeter-sized particles with a turbulent water flow. By scaling up the self-assembly processes to the centimeter-scale, the characteristic time constant scale also drastically increases. This makes the system a...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2017-09
Main Authors: Hageman, T A G, Löthman, P A, Dirnberger, M, Elwenspoek, M, Manz, A, Abelmann, L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hageman, T A G
Löthman, P A
Dirnberger, M
Elwenspoek, M
Manz, A
Abelmann, L
description We built and characterised a macroscopic self-assembly reactor that agitates magnetic, centimeter-sized particles with a turbulent water flow. By scaling up the self-assembly processes to the centimeter-scale, the characteristic time constant scale also drastically increases. This makes the system a physical simulator of microscopic self-assembly, where the interaction of inserted particles are easily observable. Trajectory analysis of single particles reveals their velocity to be a Maxwell-Boltzmann distribution and it shows that their average squared displacement over time can be modelled by a confined random walk model, demonstrating a high level of similarity to Brownian motion. The interaction of two particles has been modelled and verified experimentally by observing the distance between two particles over time. The disturbing energy (analogue to temperature) that was obtained experimentally increases with sphere size, and differs by an order of magnitude between single-sphere and two-sphere systems (approximately 80 \(\mathrm{\mu J}\) versus 6.5 \(\mathrm{\mu J}\), respectively).
doi_str_mv 10.48550/arxiv.1709.04978
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071337789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071337789</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-cb06b8e2dce1905c5f881577ff754d9f0897aaeabbd51ad8d1ea61a4447be9a03</originalsourceid><addsrcrecordid>eNpFjs1qAjEYRUOhULE-QHeBrsfm1yTLIv0DpRv38iX5hkZmJprMSPv2FSx0dRb3cDmEPHC2VFZr9gTlO52X3DC3ZMoZe0NmQkreWCXEHVnUemCMiZURWssZ6bcQSq4hH1OgeJrSGTocAtI2F9qn_63PY8oDTQMFOk7FT1ctlnTGgY5fBbGJqcehXjToaMWubaBW7H33QwtCGHO5J7ctdBUXf5yT3evLbv3ebD7fPtbPmwa0cE3wbOUtihiQO6aDbq3l2pi2NVpF1zLrDACC91FziDZyhBUHpZTx6IDJOXm83h5LPk1Yx_0hT-VSVfeCGS6lMdbJX7K2Xag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071337789</pqid></control><display><type>article</type><title>Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor</title><source>Publicly Available Content Database</source><creator>Hageman, T A G ; Löthman, P A ; Dirnberger, M ; Elwenspoek, M ; Manz, A ; Abelmann, L</creator><creatorcontrib>Hageman, T A G ; Löthman, P A ; Dirnberger, M ; Elwenspoek, M ; Manz, A ; Abelmann, L</creatorcontrib><description>We built and characterised a macroscopic self-assembly reactor that agitates magnetic, centimeter-sized particles with a turbulent water flow. By scaling up the self-assembly processes to the centimeter-scale, the characteristic time constant scale also drastically increases. This makes the system a physical simulator of microscopic self-assembly, where the interaction of inserted particles are easily observable. Trajectory analysis of single particles reveals their velocity to be a Maxwell-Boltzmann distribution and it shows that their average squared displacement over time can be modelled by a confined random walk model, demonstrating a high level of similarity to Brownian motion. The interaction of two particles has been modelled and verified experimentally by observing the distance between two particles over time. The disturbing energy (analogue to temperature) that was obtained experimentally increases with sphere size, and differs by an order of magnitude between single-sphere and two-sphere systems (approximately 80 \(\mathrm{\mu J}\) versus 6.5 \(\mathrm{\mu J}\), respectively).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1709.04978</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boltzmann distribution ; Brownian motion ; Computational fluid dynamics ; Computer simulation ; Random walk ; Self-assembly ; Time constant ; Trajectory analysis ; Turbulence ; Turbulent flow ; Water flow</subject><ispartof>arXiv.org, 2017-09</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071337789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Hageman, T A G</creatorcontrib><creatorcontrib>Löthman, P A</creatorcontrib><creatorcontrib>Dirnberger, M</creatorcontrib><creatorcontrib>Elwenspoek, M</creatorcontrib><creatorcontrib>Manz, A</creatorcontrib><creatorcontrib>Abelmann, L</creatorcontrib><title>Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor</title><title>arXiv.org</title><description>We built and characterised a macroscopic self-assembly reactor that agitates magnetic, centimeter-sized particles with a turbulent water flow. By scaling up the self-assembly processes to the centimeter-scale, the characteristic time constant scale also drastically increases. This makes the system a physical simulator of microscopic self-assembly, where the interaction of inserted particles are easily observable. Trajectory analysis of single particles reveals their velocity to be a Maxwell-Boltzmann distribution and it shows that their average squared displacement over time can be modelled by a confined random walk model, demonstrating a high level of similarity to Brownian motion. The interaction of two particles has been modelled and verified experimentally by observing the distance between two particles over time. The disturbing energy (analogue to temperature) that was obtained experimentally increases with sphere size, and differs by an order of magnitude between single-sphere and two-sphere systems (approximately 80 \(\mathrm{\mu J}\) versus 6.5 \(\mathrm{\mu J}\), respectively).</description><subject>Boltzmann distribution</subject><subject>Brownian motion</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Random walk</subject><subject>Self-assembly</subject><subject>Time constant</subject><subject>Trajectory analysis</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><subject>Water flow</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpFjs1qAjEYRUOhULE-QHeBrsfm1yTLIv0DpRv38iX5hkZmJprMSPv2FSx0dRb3cDmEPHC2VFZr9gTlO52X3DC3ZMoZe0NmQkreWCXEHVnUemCMiZURWssZ6bcQSq4hH1OgeJrSGTocAtI2F9qn_63PY8oDTQMFOk7FT1ctlnTGgY5fBbGJqcehXjToaMWubaBW7H33QwtCGHO5J7ctdBUXf5yT3evLbv3ebD7fPtbPmwa0cE3wbOUtihiQO6aDbq3l2pi2NVpF1zLrDACC91FziDZyhBUHpZTx6IDJOXm83h5LPk1Yx_0hT-VSVfeCGS6lMdbJX7K2Xag</recordid><startdate>20170912</startdate><enddate>20170912</enddate><creator>Hageman, T A G</creator><creator>Löthman, P A</creator><creator>Dirnberger, M</creator><creator>Elwenspoek, M</creator><creator>Manz, A</creator><creator>Abelmann, L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170912</creationdate><title>Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor</title><author>Hageman, T A G ; Löthman, P A ; Dirnberger, M ; Elwenspoek, M ; Manz, A ; Abelmann, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-cb06b8e2dce1905c5f881577ff754d9f0897aaeabbd51ad8d1ea61a4447be9a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boltzmann distribution</topic><topic>Brownian motion</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Random walk</topic><topic>Self-assembly</topic><topic>Time constant</topic><topic>Trajectory analysis</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><topic>Water flow</topic><toplevel>online_resources</toplevel><creatorcontrib>Hageman, T A G</creatorcontrib><creatorcontrib>Löthman, P A</creatorcontrib><creatorcontrib>Dirnberger, M</creatorcontrib><creatorcontrib>Elwenspoek, M</creatorcontrib><creatorcontrib>Manz, A</creatorcontrib><creatorcontrib>Abelmann, L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hageman, T A G</au><au>Löthman, P A</au><au>Dirnberger, M</au><au>Elwenspoek, M</au><au>Manz, A</au><au>Abelmann, L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor</atitle><jtitle>arXiv.org</jtitle><date>2017-09-12</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>We built and characterised a macroscopic self-assembly reactor that agitates magnetic, centimeter-sized particles with a turbulent water flow. By scaling up the self-assembly processes to the centimeter-scale, the characteristic time constant scale also drastically increases. This makes the system a physical simulator of microscopic self-assembly, where the interaction of inserted particles are easily observable. Trajectory analysis of single particles reveals their velocity to be a Maxwell-Boltzmann distribution and it shows that their average squared displacement over time can be modelled by a confined random walk model, demonstrating a high level of similarity to Brownian motion. The interaction of two particles has been modelled and verified experimentally by observing the distance between two particles over time. The disturbing energy (analogue to temperature) that was obtained experimentally increases with sphere size, and differs by an order of magnitude between single-sphere and two-sphere systems (approximately 80 \(\mathrm{\mu J}\) versus 6.5 \(\mathrm{\mu J}\), respectively).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1709.04978</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2017-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071337789
source Publicly Available Content Database
subjects Boltzmann distribution
Brownian motion
Computational fluid dynamics
Computer simulation
Random walk
Self-assembly
Time constant
Trajectory analysis
Turbulence
Turbulent flow
Water flow
title Macroscopic equivalence for microscopic motion in a turbulence driven three-dimensional self-assembly reactor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A13%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20equivalence%20for%20microscopic%20motion%20in%20a%20turbulence%20driven%20three-dimensional%20self-assembly%20reactor&rft.jtitle=arXiv.org&rft.au=Hageman,%20T%20A%20G&rft.date=2017-09-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1709.04978&rft_dat=%3Cproquest%3E2071337789%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-cb06b8e2dce1905c5f881577ff754d9f0897aaeabbd51ad8d1ea61a4447be9a03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071337789&rft_id=info:pmid/&rfr_iscdi=true