Loading…

Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation

Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to hete...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-02
Main Authors: Hornung, Raphael, Grünberger, Alexander, Westerwalbesloh, Christoph, Dietrich Kohlheyer, Gompper, Gerhard, Elgeti, Jens
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hornung, Raphael
Grünberger, Alexander
Westerwalbesloh, Christoph
Dietrich Kohlheyer
Gompper, Gerhard
Elgeti, Jens
description Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism Corynebacterium glutamicum under well-controlled conditions. With a reaction-diffusion type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequentially, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.
doi_str_mv 10.48550/arxiv.1802.05858
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071576570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071576570</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-87d171a8080c5a00e122780a41ce8f2f2c887b8227c2689e9410005999c1d47f3</originalsourceid><addsrcrecordid>eNotj01LAzEURYMgWGp_gLuA66kvbybNm6UUv6AgQvclzWTqK2mimUz15zuiqwvnwrlcIW4ULBvSGu5s_ubzUhHgEjRpuhAzrGtVUYN4JRbDcAQAXBnUup4J9zbaWLjYwmcvT6nzIXA8yNTLOJbMPpYq8ImL7-Qhp6_y_lvtrSs-sw3SpZAi-0FylCd2OfVh5I6ddGOYlJM2xWtx2dsw-MV_zsX28WG7fq42r08v6_tNZTVCRaZTRlkCAqctgFeIhsA2ynnqsUdHZPY0QYcran3bqOmIbtvWqa4xfT0Xt3_aj5w-Rz-U3TGNOU6LOwSjtFlpA_UPFU1Xxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071576570</pqid></control><display><type>article</type><title>Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation</title><source>Publicly Available Content Database</source><creator>Hornung, Raphael ; Grünberger, Alexander ; Westerwalbesloh, Christoph ; Dietrich Kohlheyer ; Gompper, Gerhard ; Elgeti, Jens</creator><creatorcontrib>Hornung, Raphael ; Grünberger, Alexander ; Westerwalbesloh, Christoph ; Dietrich Kohlheyer ; Gompper, Gerhard ; Elgeti, Jens</creatorcontrib><description>Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism Corynebacterium glutamicum under well-controlled conditions. With a reaction-diffusion type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequentially, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1802.05858</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Colonies ; Computer simulation ; Concentration gradient ; Cultivation ; Mathematical models ; Microfluidics ; Microorganisms ; Modelling ; Nutrients ; Parameters</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071576570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Hornung, Raphael</creatorcontrib><creatorcontrib>Grünberger, Alexander</creatorcontrib><creatorcontrib>Westerwalbesloh, Christoph</creatorcontrib><creatorcontrib>Dietrich Kohlheyer</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Elgeti, Jens</creatorcontrib><title>Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation</title><title>arXiv.org</title><description>Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism Corynebacterium glutamicum under well-controlled conditions. With a reaction-diffusion type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequentially, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.</description><subject>Colonies</subject><subject>Computer simulation</subject><subject>Concentration gradient</subject><subject>Cultivation</subject><subject>Mathematical models</subject><subject>Microfluidics</subject><subject>Microorganisms</subject><subject>Modelling</subject><subject>Nutrients</subject><subject>Parameters</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LAzEURYMgWGp_gLuA66kvbybNm6UUv6AgQvclzWTqK2mimUz15zuiqwvnwrlcIW4ULBvSGu5s_ubzUhHgEjRpuhAzrGtVUYN4JRbDcAQAXBnUup4J9zbaWLjYwmcvT6nzIXA8yNTLOJbMPpYq8ImL7-Qhp6_y_lvtrSs-sw3SpZAi-0FylCd2OfVh5I6ddGOYlJM2xWtx2dsw-MV_zsX28WG7fq42r08v6_tNZTVCRaZTRlkCAqctgFeIhsA2ynnqsUdHZPY0QYcran3bqOmIbtvWqa4xfT0Xt3_aj5w-Rz-U3TGNOU6LOwSjtFlpA_UPFU1Xxg</recordid><startdate>20180216</startdate><enddate>20180216</enddate><creator>Hornung, Raphael</creator><creator>Grünberger, Alexander</creator><creator>Westerwalbesloh, Christoph</creator><creator>Dietrich Kohlheyer</creator><creator>Gompper, Gerhard</creator><creator>Elgeti, Jens</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180216</creationdate><title>Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation</title><author>Hornung, Raphael ; Grünberger, Alexander ; Westerwalbesloh, Christoph ; Dietrich Kohlheyer ; Gompper, Gerhard ; Elgeti, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-87d171a8080c5a00e122780a41ce8f2f2c887b8227c2689e9410005999c1d47f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Colonies</topic><topic>Computer simulation</topic><topic>Concentration gradient</topic><topic>Cultivation</topic><topic>Mathematical models</topic><topic>Microfluidics</topic><topic>Microorganisms</topic><topic>Modelling</topic><topic>Nutrients</topic><topic>Parameters</topic><toplevel>online_resources</toplevel><creatorcontrib>Hornung, Raphael</creatorcontrib><creatorcontrib>Grünberger, Alexander</creatorcontrib><creatorcontrib>Westerwalbesloh, Christoph</creatorcontrib><creatorcontrib>Dietrich Kohlheyer</creatorcontrib><creatorcontrib>Gompper, Gerhard</creatorcontrib><creatorcontrib>Elgeti, Jens</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hornung, Raphael</au><au>Grünberger, Alexander</au><au>Westerwalbesloh, Christoph</au><au>Dietrich Kohlheyer</au><au>Gompper, Gerhard</au><au>Elgeti, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation</atitle><jtitle>arXiv.org</jtitle><date>2018-02-16</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Nutrient gradients and limitations play a pivotal role in the life of all microbes, both in their natural habitat as well as in artificial, microfluidic systems. Spatial concentration gradients of nutrients in densely packed cell configurations may locally affect the bacterial growth leading to heterogeneous micropopulations. A detailed understanding and quantitative modelling of cellular behaviour under nutrient limitations is thus highly desirable. We use microfluidic cultivations to investigate growth and microbial behaviour of the model organism Corynebacterium glutamicum under well-controlled conditions. With a reaction-diffusion type model, parameters are extracted from steady-state experiments with a one-dimensional nutrient gradient. Subsequentially, we employ particle-based simulations with these parameters to predict the dynamical growth of a colony in two dimensions. Comparing the results of those simulations with microfluidic experiments yields excellent agreement. Our modelling approach lays the foundation for a better understanding of dynamic microbial growth processes, both in nature and in applied biotechnology.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1802.05858</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071576570
source Publicly Available Content Database
subjects Colonies
Computer simulation
Concentration gradient
Cultivation
Mathematical models
Microfluidics
Microorganisms
Modelling
Nutrients
Parameters
title Quantitative modelling of nutrient-limited growth of bacterial colonies in microfluidic cultivation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A35%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20modelling%20of%20nutrient-limited%20growth%20of%20bacterial%20colonies%20in%20microfluidic%20cultivation&rft.jtitle=arXiv.org&rft.au=Hornung,%20Raphael&rft.date=2018-02-16&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1802.05858&rft_dat=%3Cproquest%3E2071576570%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-87d171a8080c5a00e122780a41ce8f2f2c887b8227c2689e9410005999c1d47f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071576570&rft_id=info:pmid/&rfr_iscdi=true