Loading…

Universal Quadratic Forms and Indecomposables over Biquadratic Fields

The aim of this article is to study (additively) indecomposable algebraic integers \(\mathcal O_K\) of biquadratic number fields \(K\) and universal totally positive quadratic forms with coefficients in \(\mathcal O_K\). There are given sufficient conditions for an indecomposable element of a quadra...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-02
Main Authors: Čech, Martin, Lachman, Dominik, Svoboda, Josef, Tinková, Magdaléna, Zemková, Kristýna
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Čech, Martin
Lachman, Dominik
Svoboda, Josef
Tinková, Magdaléna
Zemková, Kristýna
description The aim of this article is to study (additively) indecomposable algebraic integers \(\mathcal O_K\) of biquadratic number fields \(K\) and universal totally positive quadratic forms with coefficients in \(\mathcal O_K\). There are given sufficient conditions for an indecomposable element of a quadratic subfield to remain indecomposable in the biquadratic number field \(K\). Furthermore, estimates are proven which enable algorithmization of the method of escalation over \(K\). These are used to prove, over two particular biquadratic number fields \(\mathbb{Q}(\sqrt{2}, \sqrt{3})\) and \(\mathbb{Q}(\sqrt{6}, \sqrt{19})\), a lower bound on the number of variables of a universal quadratic forms, verifying Kitaoka's conjecture.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071620709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071620709</sourcerecordid><originalsourceid>FETCH-proquest_journals_20716207093</originalsourceid><addsrcrecordid>eNqNykELgjAYxvERBEn5HQadhbml1rVQ6hjUWaZ7g8ncdK_r87dD0LXL8z88vxVJuBB5djxwviEp4sAY42XFi0IkpH5a_QaP0tB7kMrLRfe0cX5EKq2iN6ugd-PkUHYGkLpo6VnPP6rBKNyR9UsahPTbLdk39eNyzSbv5gC4tIML3sar5azKyzjsJP5TH5qoOxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071620709</pqid></control><display><type>article</type><title>Universal Quadratic Forms and Indecomposables over Biquadratic Fields</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Čech, Martin ; Lachman, Dominik ; Svoboda, Josef ; Tinková, Magdaléna ; Zemková, Kristýna</creator><creatorcontrib>Čech, Martin ; Lachman, Dominik ; Svoboda, Josef ; Tinková, Magdaléna ; Zemková, Kristýna</creatorcontrib><description>The aim of this article is to study (additively) indecomposable algebraic integers \(\mathcal O_K\) of biquadratic number fields \(K\) and universal totally positive quadratic forms with coefficients in \(\mathcal O_K\). There are given sufficient conditions for an indecomposable element of a quadratic subfield to remain indecomposable in the biquadratic number field \(K\). Furthermore, estimates are proven which enable algorithmization of the method of escalation over \(K\). These are used to prove, over two particular biquadratic number fields \(\mathbb{Q}(\sqrt{2}, \sqrt{3})\) and \(\mathbb{Q}(\sqrt{6}, \sqrt{19})\), a lower bound on the number of variables of a universal quadratic forms, verifying Kitaoka's conjecture.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integers ; Lower bounds ; Mathematical analysis ; Number theory ; Quadratic forms ; Queuing theory</subject><ispartof>arXiv.org, 2018-02</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071620709?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Čech, Martin</creatorcontrib><creatorcontrib>Lachman, Dominik</creatorcontrib><creatorcontrib>Svoboda, Josef</creatorcontrib><creatorcontrib>Tinková, Magdaléna</creatorcontrib><creatorcontrib>Zemková, Kristýna</creatorcontrib><title>Universal Quadratic Forms and Indecomposables over Biquadratic Fields</title><title>arXiv.org</title><description>The aim of this article is to study (additively) indecomposable algebraic integers \(\mathcal O_K\) of biquadratic number fields \(K\) and universal totally positive quadratic forms with coefficients in \(\mathcal O_K\). There are given sufficient conditions for an indecomposable element of a quadratic subfield to remain indecomposable in the biquadratic number field \(K\). Furthermore, estimates are proven which enable algorithmization of the method of escalation over \(K\). These are used to prove, over two particular biquadratic number fields \(\mathbb{Q}(\sqrt{2}, \sqrt{3})\) and \(\mathbb{Q}(\sqrt{6}, \sqrt{19})\), a lower bound on the number of variables of a universal quadratic forms, verifying Kitaoka's conjecture.</description><subject>Integers</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Number theory</subject><subject>Quadratic forms</subject><subject>Queuing theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNykELgjAYxvERBEn5HQadhbml1rVQ6hjUWaZ7g8ncdK_r87dD0LXL8z88vxVJuBB5djxwviEp4sAY42XFi0IkpH5a_QaP0tB7kMrLRfe0cX5EKq2iN6ugd-PkUHYGkLpo6VnPP6rBKNyR9UsahPTbLdk39eNyzSbv5gC4tIML3sar5azKyzjsJP5TH5qoOxM</recordid><startdate>20180221</startdate><enddate>20180221</enddate><creator>Čech, Martin</creator><creator>Lachman, Dominik</creator><creator>Svoboda, Josef</creator><creator>Tinková, Magdaléna</creator><creator>Zemková, Kristýna</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180221</creationdate><title>Universal Quadratic Forms and Indecomposables over Biquadratic Fields</title><author>Čech, Martin ; Lachman, Dominik ; Svoboda, Josef ; Tinková, Magdaléna ; Zemková, Kristýna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20716207093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Integers</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Number theory</topic><topic>Quadratic forms</topic><topic>Queuing theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Čech, Martin</creatorcontrib><creatorcontrib>Lachman, Dominik</creatorcontrib><creatorcontrib>Svoboda, Josef</creatorcontrib><creatorcontrib>Tinková, Magdaléna</creatorcontrib><creatorcontrib>Zemková, Kristýna</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Čech, Martin</au><au>Lachman, Dominik</au><au>Svoboda, Josef</au><au>Tinková, Magdaléna</au><au>Zemková, Kristýna</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Universal Quadratic Forms and Indecomposables over Biquadratic Fields</atitle><jtitle>arXiv.org</jtitle><date>2018-02-21</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The aim of this article is to study (additively) indecomposable algebraic integers \(\mathcal O_K\) of biquadratic number fields \(K\) and universal totally positive quadratic forms with coefficients in \(\mathcal O_K\). There are given sufficient conditions for an indecomposable element of a quadratic subfield to remain indecomposable in the biquadratic number field \(K\). Furthermore, estimates are proven which enable algorithmization of the method of escalation over \(K\). These are used to prove, over two particular biquadratic number fields \(\mathbb{Q}(\sqrt{2}, \sqrt{3})\) and \(\mathbb{Q}(\sqrt{6}, \sqrt{19})\), a lower bound on the number of variables of a universal quadratic forms, verifying Kitaoka's conjecture.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071620709
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Integers
Lower bounds
Mathematical analysis
Number theory
Quadratic forms
Queuing theory
title Universal Quadratic Forms and Indecomposables over Biquadratic Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A39%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Universal%20Quadratic%20Forms%20and%20Indecomposables%20over%20Biquadratic%20Fields&rft.jtitle=arXiv.org&rft.au=%C4%8Cech,%20Martin&rft.date=2018-02-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071620709%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20716207093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071620709&rft_id=info:pmid/&rfr_iscdi=true