Loading…
Kosmotropic effect leads to LCST decrease in thermoresponsive polymer solutions
We study the phenomena of decrease in lower critical solution temperature (LCST) with addition of kosmotropic (order-making) cosolvents in thermoresponsive polymer solutions. A combination of explicit solvent coarse-grained simulations and mean-field theory has been employed. The polymer-solvent LCS...
Saved in:
Published in: | arXiv.org 2018-03 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the phenomena of decrease in lower critical solution temperature (LCST) with addition of kosmotropic (order-making) cosolvents in thermoresponsive polymer solutions. A combination of explicit solvent coarse-grained simulations and mean-field theory has been employed. The polymer-solvent LCST behavior in the theoretical models have been incorporated through the Kolomeisky-Widom solvophobic potential. Our results illustrate how the decrease in the LCST can be achieved by the reduction in the bulk solvent energy with addition of cosolvent. It is shown that this effect of cosolvent is weaker with increase in polymer hydrophilicity which can explain the absence of LCST decrease in PDEA, water and methanol systems. The coarse-grained nature of the models indicates that a mean energetic representation of the system is sufficient to understand the phenomena of LCST decrease. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1711.03446 |