Loading…

Derivation of mean-field equations for stochastic particle systems

We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the l...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-03
Main Authors: Jatuviriyapornchai, Watthanan, Grosskinsky, Stefan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jatuviriyapornchai, Watthanan
Grosskinsky, Stefan
description We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.
doi_str_mv 10.48550/arxiv.1703.08811
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071716297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071716297</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-c5dc74cefad51d1d6b9ba4a419f1bfb60ad4cc1cca8f8cd7ef87a169241ebcab3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF2g6xlz85hkllofFQpuui83LzplOmmTmaJ_b1FXB87iHEIegNXSKMUeMX91lxo0EzUzBuCGzLgQUBnJ-R1ZlHJgjPFGc6XEjDy_hNxdcOzSQFOkx4BDFbvQexrO068uNKZMy5jcHsvYOXrCfEUfaPkuYziWe3IbsS9h8c852b69blfravP5_rF62lSouK6c8k5LFyJ6BR58Y1uLEiW0EWy0DUMvnQPn0ETjvA7RaISm5RKCdWjFnCz_sqeczlMo4-6QpjxcjzvONGhoeKvFDxMOTig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071716297</pqid></control><display><type>article</type><title>Derivation of mean-field equations for stochastic particle systems</title><source>Publicly Available Content (ProQuest)</source><creator>Jatuviriyapornchai, Watthanan ; Grosskinsky, Stefan</creator><creatorcontrib>Jatuviriyapornchai, Watthanan ; Grosskinsky, Stefan</creatorcontrib><description>We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1703.08811</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conservation ; Gelation ; System effectiveness</subject><ispartof>arXiv.org, 2018-03</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071716297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Jatuviriyapornchai, Watthanan</creatorcontrib><creatorcontrib>Grosskinsky, Stefan</creatorcontrib><title>Derivation of mean-field equations for stochastic particle systems</title><title>arXiv.org</title><description>We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.</description><subject>Conservation</subject><subject>Gelation</subject><subject>System effectiveness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF2g6xlz85hkllofFQpuui83LzplOmmTmaJ_b1FXB87iHEIegNXSKMUeMX91lxo0EzUzBuCGzLgQUBnJ-R1ZlHJgjPFGc6XEjDy_hNxdcOzSQFOkx4BDFbvQexrO068uNKZMy5jcHsvYOXrCfEUfaPkuYziWe3IbsS9h8c852b69blfravP5_rF62lSouK6c8k5LFyJ6BR58Y1uLEiW0EWy0DUMvnQPn0ETjvA7RaISm5RKCdWjFnCz_sqeczlMo4-6QpjxcjzvONGhoeKvFDxMOTig</recordid><startdate>20180306</startdate><enddate>20180306</enddate><creator>Jatuviriyapornchai, Watthanan</creator><creator>Grosskinsky, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180306</creationdate><title>Derivation of mean-field equations for stochastic particle systems</title><author>Jatuviriyapornchai, Watthanan ; Grosskinsky, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-c5dc74cefad51d1d6b9ba4a419f1bfb60ad4cc1cca8f8cd7ef87a169241ebcab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conservation</topic><topic>Gelation</topic><topic>System effectiveness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jatuviriyapornchai, Watthanan</creatorcontrib><creatorcontrib>Grosskinsky, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jatuviriyapornchai, Watthanan</au><au>Grosskinsky, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of mean-field equations for stochastic particle systems</atitle><jtitle>arXiv.org</jtitle><date>2018-03-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1703.08811</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071716297
source Publicly Available Content (ProQuest)
subjects Conservation
Gelation
System effectiveness
title Derivation of mean-field equations for stochastic particle systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20mean-field%20equations%20for%20stochastic%20particle%20systems&rft.jtitle=arXiv.org&rft.au=Jatuviriyapornchai,%20Watthanan&rft.date=2018-03-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1703.08811&rft_dat=%3Cproquest%3E2071716297%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-c5dc74cefad51d1d6b9ba4a419f1bfb60ad4cc1cca8f8cd7ef87a169241ebcab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071716297&rft_id=info:pmid/&rfr_iscdi=true