Loading…
Derivation of mean-field equations for stochastic particle systems
We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the l...
Saved in:
Published in: | arXiv.org 2018-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jatuviriyapornchai, Watthanan Grosskinsky, Stefan |
description | We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation. |
doi_str_mv | 10.48550/arxiv.1703.08811 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071716297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071716297</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-c5dc74cefad51d1d6b9ba4a419f1bfb60ad4cc1cca8f8cd7ef87a169241ebcab3</originalsourceid><addsrcrecordid>eNotjctKAzEUQIMgWGo_wF2g6xlz85hkllofFQpuui83LzplOmmTmaJ_b1FXB87iHEIegNXSKMUeMX91lxo0EzUzBuCGzLgQUBnJ-R1ZlHJgjPFGc6XEjDy_hNxdcOzSQFOkx4BDFbvQexrO068uNKZMy5jcHsvYOXrCfEUfaPkuYziWe3IbsS9h8c852b69blfravP5_rF62lSouK6c8k5LFyJ6BR58Y1uLEiW0EWy0DUMvnQPn0ETjvA7RaISm5RKCdWjFnCz_sqeczlMo4-6QpjxcjzvONGhoeKvFDxMOTig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071716297</pqid></control><display><type>article</type><title>Derivation of mean-field equations for stochastic particle systems</title><source>Publicly Available Content (ProQuest)</source><creator>Jatuviriyapornchai, Watthanan ; Grosskinsky, Stefan</creator><creatorcontrib>Jatuviriyapornchai, Watthanan ; Grosskinsky, Stefan</creatorcontrib><description>We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1703.08811</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conservation ; Gelation ; System effectiveness</subject><ispartof>arXiv.org, 2018-03</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071716297?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Jatuviriyapornchai, Watthanan</creatorcontrib><creatorcontrib>Grosskinsky, Stefan</creatorcontrib><title>Derivation of mean-field equations for stochastic particle systems</title><title>arXiv.org</title><description>We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.</description><subject>Conservation</subject><subject>Gelation</subject><subject>System effectiveness</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctKAzEUQIMgWGo_wF2g6xlz85hkllofFQpuui83LzplOmmTmaJ_b1FXB87iHEIegNXSKMUeMX91lxo0EzUzBuCGzLgQUBnJ-R1ZlHJgjPFGc6XEjDy_hNxdcOzSQFOkx4BDFbvQexrO068uNKZMy5jcHsvYOXrCfEUfaPkuYziWe3IbsS9h8c852b69blfravP5_rF62lSouK6c8k5LFyJ6BR58Y1uLEiW0EWy0DUMvnQPn0ETjvA7RaISm5RKCdWjFnCz_sqeczlMo4-6QpjxcjzvONGhoeKvFDxMOTig</recordid><startdate>20180306</startdate><enddate>20180306</enddate><creator>Jatuviriyapornchai, Watthanan</creator><creator>Grosskinsky, Stefan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180306</creationdate><title>Derivation of mean-field equations for stochastic particle systems</title><author>Jatuviriyapornchai, Watthanan ; Grosskinsky, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-c5dc74cefad51d1d6b9ba4a419f1bfb60ad4cc1cca8f8cd7ef87a169241ebcab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conservation</topic><topic>Gelation</topic><topic>System effectiveness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jatuviriyapornchai, Watthanan</creatorcontrib><creatorcontrib>Grosskinsky, Stefan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jatuviriyapornchai, Watthanan</au><au>Grosskinsky, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Derivation of mean-field equations for stochastic particle systems</atitle><jtitle>arXiv.org</jtitle><date>2018-03-06</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We study stochastic particle systems on a complete graph and derive effective mean-field rate equations in the limit of diverging system size, which are also known from cluster aggregation models. We establish the propagation of chaos under generic growth conditions on particle jump rates, and the limit provides a master equation for the single site dynamics of the particle system, which is a non-linear birth death chain. Conservation of mass in the particle system leads to conservation of the first moment for the limit dynamics, and to non-uniqueness of stationary distributions. Our findings are consistent with recent results on exchange driven growth, and provide a connection between the well studied phenomena of gelation and condensation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1703.08811</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071716297 |
source | Publicly Available Content (ProQuest) |
subjects | Conservation Gelation System effectiveness |
title | Derivation of mean-field equations for stochastic particle systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A55%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Derivation%20of%20mean-field%20equations%20for%20stochastic%20particle%20systems&rft.jtitle=arXiv.org&rft.au=Jatuviriyapornchai,%20Watthanan&rft.date=2018-03-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1703.08811&rft_dat=%3Cproquest%3E2071716297%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-c5dc74cefad51d1d6b9ba4a419f1bfb60ad4cc1cca8f8cd7ef87a169241ebcab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071716297&rft_id=info:pmid/&rfr_iscdi=true |