Loading…
Non-commutative Geometry of Homogenized Quantum \(\mathfrak{sl}(2,\mathbb{C})\)
This paper examines the relationship between certain non-commutative analogues of projective 3-space, \(\mathbb{P}^3\), and the quantized enveloping algebras \(U_q(\mathfrak{sl}_2)\). The relationship is mediated by certain non-commutative graded algebras \(S\), one for each \(q \in \mathbb{C}^\time...
Saved in:
Published in: | arXiv.org 2017-07 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Chirvasitu, Alex Smith, S Paul Liang Ze Wong |
description | This paper examines the relationship between certain non-commutative analogues of projective 3-space, \(\mathbb{P}^3\), and the quantized enveloping algebras \(U_q(\mathfrak{sl}_2)\). The relationship is mediated by certain non-commutative graded algebras \(S\), one for each \(q \in \mathbb{C}^\times\), having a degree-two central element \(c\) such that \(S[c^{-1}]_0 \cong U_q(\mathfrak{sl}_2)\). The non-commutative analogues of \(\mathbb{P}^3\) are the spaces \(\operatorname{Proj}_{nc}(S)\). We show how the points, fat points, lines, and quadrics, in \(\operatorname{Proj}_{nc}(S)\), and their incidence relations, correspond to finite dimensional irreducible representations of \(U_q(\mathfrak{sl}_2)\), Verma modules, annihilators of Verma modules, and homomorphisms between them. |
doi_str_mv | 10.48550/arxiv.1607.00481 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071781447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071781447</sourcerecordid><originalsourceid>FETCH-proquest_journals_20717814473</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgKNoDuAu4UbD1JU1N9-JnpQguCxI11appNB_xg3dXxAO4GoYZhFoEIpYmCfSFuRXXiAyARwAsJRVUp3FMwpRRWkOBtQcAoANOkySuo_lMl-FGK-WdcMVV4onUSjpzxzrHU630TpbFQ27xwovSeYWzTqaE2-dGHJ_29OrQ3tfX6-fw1c26TVTNxcnK4McGao9Hy-E0PBt98dK61UF7U37SigInPCWM8fi_6w1hyUS9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071781447</pqid></control><display><type>article</type><title>Non-commutative Geometry of Homogenized Quantum \(\mathfrak{sl}(2,\mathbb{C})\)</title><source>Publicly Available Content Database</source><creator>Chirvasitu, Alex ; Smith, S Paul ; Liang Ze Wong</creator><creatorcontrib>Chirvasitu, Alex ; Smith, S Paul ; Liang Ze Wong</creatorcontrib><description>This paper examines the relationship between certain non-commutative analogues of projective 3-space, \(\mathbb{P}^3\), and the quantized enveloping algebras \(U_q(\mathfrak{sl}_2)\). The relationship is mediated by certain non-commutative graded algebras \(S\), one for each \(q \in \mathbb{C}^\times\), having a degree-two central element \(c\) such that \(S[c^{-1}]_0 \cong U_q(\mathfrak{sl}_2)\). The non-commutative analogues of \(\mathbb{P}^3\) are the spaces \(\operatorname{Proj}_{nc}(S)\). We show how the points, fat points, lines, and quadrics, in \(\operatorname{Proj}_{nc}(S)\), and their incidence relations, correspond to finite dimensional irreducible representations of \(U_q(\mathfrak{sl}_2)\), Verma modules, annihilators of Verma modules, and homomorphisms between them.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1607.00481</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homomorphisms ; Modules</subject><ispartof>arXiv.org, 2017-07</ispartof><rights>2017. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071781447?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Chirvasitu, Alex</creatorcontrib><creatorcontrib>Smith, S Paul</creatorcontrib><creatorcontrib>Liang Ze Wong</creatorcontrib><title>Non-commutative Geometry of Homogenized Quantum \(\mathfrak{sl}(2,\mathbb{C})\)</title><title>arXiv.org</title><description>This paper examines the relationship between certain non-commutative analogues of projective 3-space, \(\mathbb{P}^3\), and the quantized enveloping algebras \(U_q(\mathfrak{sl}_2)\). The relationship is mediated by certain non-commutative graded algebras \(S\), one for each \(q \in \mathbb{C}^\times\), having a degree-two central element \(c\) such that \(S[c^{-1}]_0 \cong U_q(\mathfrak{sl}_2)\). The non-commutative analogues of \(\mathbb{P}^3\) are the spaces \(\operatorname{Proj}_{nc}(S)\). We show how the points, fat points, lines, and quadrics, in \(\operatorname{Proj}_{nc}(S)\), and their incidence relations, correspond to finite dimensional irreducible representations of \(U_q(\mathfrak{sl}_2)\), Verma modules, annihilators of Verma modules, and homomorphisms between them.</description><subject>Homomorphisms</subject><subject>Modules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgKNoDuAu4UbD1JU1N9-JnpQguCxI11appNB_xg3dXxAO4GoYZhFoEIpYmCfSFuRXXiAyARwAsJRVUp3FMwpRRWkOBtQcAoANOkySuo_lMl-FGK-WdcMVV4onUSjpzxzrHU630TpbFQ27xwovSeYWzTqaE2-dGHJ_29OrQ3tfX6-fw1c26TVTNxcnK4McGao9Hy-E0PBt98dK61UF7U37SigInPCWM8fi_6w1hyUS9</recordid><startdate>20170714</startdate><enddate>20170714</enddate><creator>Chirvasitu, Alex</creator><creator>Smith, S Paul</creator><creator>Liang Ze Wong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20170714</creationdate><title>Non-commutative Geometry of Homogenized Quantum \(\mathfrak{sl}(2,\mathbb{C})\)</title><author>Chirvasitu, Alex ; Smith, S Paul ; Liang Ze Wong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20717814473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Homomorphisms</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Chirvasitu, Alex</creatorcontrib><creatorcontrib>Smith, S Paul</creatorcontrib><creatorcontrib>Liang Ze Wong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chirvasitu, Alex</au><au>Smith, S Paul</au><au>Liang Ze Wong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Non-commutative Geometry of Homogenized Quantum \(\mathfrak{sl}(2,\mathbb{C})\)</atitle><jtitle>arXiv.org</jtitle><date>2017-07-14</date><risdate>2017</risdate><eissn>2331-8422</eissn><abstract>This paper examines the relationship between certain non-commutative analogues of projective 3-space, \(\mathbb{P}^3\), and the quantized enveloping algebras \(U_q(\mathfrak{sl}_2)\). The relationship is mediated by certain non-commutative graded algebras \(S\), one for each \(q \in \mathbb{C}^\times\), having a degree-two central element \(c\) such that \(S[c^{-1}]_0 \cong U_q(\mathfrak{sl}_2)\). The non-commutative analogues of \(\mathbb{P}^3\) are the spaces \(\operatorname{Proj}_{nc}(S)\). We show how the points, fat points, lines, and quadrics, in \(\operatorname{Proj}_{nc}(S)\), and their incidence relations, correspond to finite dimensional irreducible representations of \(U_q(\mathfrak{sl}_2)\), Verma modules, annihilators of Verma modules, and homomorphisms between them.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1607.00481</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2017-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071781447 |
source | Publicly Available Content Database |
subjects | Homomorphisms Modules |
title | Non-commutative Geometry of Homogenized Quantum \(\mathfrak{sl}(2,\mathbb{C})\) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Non-commutative%20Geometry%20of%20Homogenized%20Quantum%20%5C(%5Cmathfrak%7Bsl%7D(2,%5Cmathbb%7BC%7D)%5C)&rft.jtitle=arXiv.org&rft.au=Chirvasitu,%20Alex&rft.date=2017-07-14&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1607.00481&rft_dat=%3Cproquest%3E2071781447%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20717814473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071781447&rft_id=info:pmid/&rfr_iscdi=true |