Loading…
On the automorphy of 2-dimensional potentially semi-stable deformation rings of \(G_{\mathbb{Q}_p}\)
Using \(p\)-adic local Langlands correspondence for \(\operatorname{GL}_2(\mathbb{Q}_p)\), we prove that the support of patched modules constructed by Caraiani, Emerton, Gee, Geraghty, Paskunas, and Shin meet every irreducible component of the potentially semistable deformation ring. This gives a ne...
Saved in:
Published in: | arXiv.org 2021-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shen-Ning, Tung |
description | Using \(p\)-adic local Langlands correspondence for \(\operatorname{GL}_2(\mathbb{Q}_p)\), we prove that the support of patched modules constructed by Caraiani, Emerton, Gee, Geraghty, Paskunas, and Shin meet every irreducible component of the potentially semistable deformation ring. This gives a new proof of the Breuil-Mézard conjecture for 2-dimensional representations of the absolute Galois group of \(\mathbb{Q}_p\) when \(p > 2\), which is new in the case \(p = 3\) and \(\bar{r}\) a twist of an extension of the trivial character by the mod p cyclotomic character. As a consequence, a local restriction in the proof of Fontaine-Mazur conjecture by Kisin is removed. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071879067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071879067</sourcerecordid><originalsourceid>FETCH-proquest_journals_20718790673</originalsourceid><addsrcrecordid>eNqNjU0LgjAch0cQJOV3GHSpgzBnvnSOXm4RdBTGxJmTudn-8yDid8-gD9DpgR_Pj2eBPBpFYZAdKF0hH6AhhNAkpXEceai8a-xqgXnvTGtsVw_YVJgGpWyFBmk0V7gzTmgnuVIDBtHKABwvlMClqIxtuZstbKV-wfea765szOe1LorxMbFuyvcbtKy4AuH_uEbby_l5ugWdNe9egGON6e2cAkZJGmbpkSRp9J_1AVBxRsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071879067</pqid></control><display><type>article</type><title>On the automorphy of 2-dimensional potentially semi-stable deformation rings of \(G_{\mathbb{Q}_p}\)</title><source>Publicly Available Content Database</source><creator>Shen-Ning, Tung</creator><creatorcontrib>Shen-Ning, Tung</creatorcontrib><description>Using \(p\)-adic local Langlands correspondence for \(\operatorname{GL}_2(\mathbb{Q}_p)\), we prove that the support of patched modules constructed by Caraiani, Emerton, Gee, Geraghty, Paskunas, and Shin meet every irreducible component of the potentially semistable deformation ring. This gives a new proof of the Breuil-Mézard conjecture for 2-dimensional representations of the absolute Galois group of \(\mathbb{Q}_p\) when \(p > 2\), which is new in the case \(p = 3\) and \(\bar{r}\) a twist of an extension of the trivial character by the mod p cyclotomic character. As a consequence, a local restriction in the proof of Fontaine-Mazur conjecture by Kisin is removed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deformation ; Dimensional stability ; Number theory</subject><ispartof>arXiv.org, 2021-03</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071879067?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Shen-Ning, Tung</creatorcontrib><title>On the automorphy of 2-dimensional potentially semi-stable deformation rings of \(G_{\mathbb{Q}_p}\)</title><title>arXiv.org</title><description>Using \(p\)-adic local Langlands correspondence for \(\operatorname{GL}_2(\mathbb{Q}_p)\), we prove that the support of patched modules constructed by Caraiani, Emerton, Gee, Geraghty, Paskunas, and Shin meet every irreducible component of the potentially semistable deformation ring. This gives a new proof of the Breuil-Mézard conjecture for 2-dimensional representations of the absolute Galois group of \(\mathbb{Q}_p\) when \(p > 2\), which is new in the case \(p = 3\) and \(\bar{r}\) a twist of an extension of the trivial character by the mod p cyclotomic character. As a consequence, a local restriction in the proof of Fontaine-Mazur conjecture by Kisin is removed.</description><subject>Deformation</subject><subject>Dimensional stability</subject><subject>Number theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjU0LgjAch0cQJOV3GHSpgzBnvnSOXm4RdBTGxJmTudn-8yDid8-gD9DpgR_Pj2eBPBpFYZAdKF0hH6AhhNAkpXEceai8a-xqgXnvTGtsVw_YVJgGpWyFBmk0V7gzTmgnuVIDBtHKABwvlMClqIxtuZstbKV-wfea765szOe1LorxMbFuyvcbtKy4AuH_uEbby_l5ugWdNe9egGON6e2cAkZJGmbpkSRp9J_1AVBxRsg</recordid><startdate>20210321</startdate><enddate>20210321</enddate><creator>Shen-Ning, Tung</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210321</creationdate><title>On the automorphy of 2-dimensional potentially semi-stable deformation rings of \(G_{\mathbb{Q}_p}\)</title><author>Shen-Ning, Tung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20718790673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deformation</topic><topic>Dimensional stability</topic><topic>Number theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Shen-Ning, Tung</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen-Ning, Tung</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the automorphy of 2-dimensional potentially semi-stable deformation rings of \(G_{\mathbb{Q}_p}\)</atitle><jtitle>arXiv.org</jtitle><date>2021-03-21</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Using \(p\)-adic local Langlands correspondence for \(\operatorname{GL}_2(\mathbb{Q}_p)\), we prove that the support of patched modules constructed by Caraiani, Emerton, Gee, Geraghty, Paskunas, and Shin meet every irreducible component of the potentially semistable deformation ring. This gives a new proof of the Breuil-Mézard conjecture for 2-dimensional representations of the absolute Galois group of \(\mathbb{Q}_p\) when \(p > 2\), which is new in the case \(p = 3\) and \(\bar{r}\) a twist of an extension of the trivial character by the mod p cyclotomic character. As a consequence, a local restriction in the proof of Fontaine-Mazur conjecture by Kisin is removed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071879067 |
source | Publicly Available Content Database |
subjects | Deformation Dimensional stability Number theory |
title | On the automorphy of 2-dimensional potentially semi-stable deformation rings of \(G_{\mathbb{Q}_p}\) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T04%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20automorphy%20of%202-dimensional%20potentially%20semi-stable%20deformation%20rings%20of%20%5C(G_%7B%5Cmathbb%7BQ%7D_p%7D%5C)&rft.jtitle=arXiv.org&rft.au=Shen-Ning,%20Tung&rft.date=2021-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071879067%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20718790673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071879067&rft_id=info:pmid/&rfr_iscdi=true |