Loading…
Learning SO(3) Equivariant Representations with Spherical CNNs
We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we...
Saved in:
Published in: | arXiv.org 2018-09 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Esteves, Carlos Allen-Blanchette, Christine Makadia, Ameesh Daniilidis, Kostas |
description | We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071884747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071884747</sourcerecordid><originalsourceid>FETCH-proquest_journals_20718847473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw80lNLMrLzEtXCPbXMNZUcC0szSxLLMpMzCtRCEotKEotTs0rSSzJzM8rVijPLMlQCC7ISC3KTE7MUXD28yvmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzQwsLE3MTc2PiVAEAYLg3sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071884747</pqid></control><display><type>article</type><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><source>Publicly Available Content Database</source><creator>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creator><creatorcontrib>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creatorcontrib><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Classification ; Data augmentation ; Neural networks ; Spherical harmonics ; Three dimensional models</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071884747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><title>arXiv.org</title><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data augmentation</subject><subject>Neural networks</subject><subject>Spherical harmonics</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw80lNLMrLzEtXCPbXMNZUcC0szSxLLMpMzCtRCEotKEotTs0rSSzJzM8rVijPLMlQCC7ISC3KTE7MUXD28yvmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzQwsLE3MTc2PiVAEAYLg3sQ</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Esteves, Carlos</creator><creator>Allen-Blanchette, Christine</creator><creator>Makadia, Ameesh</creator><creator>Daniilidis, Kostas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180928</creationdate><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><author>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20718847473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data augmentation</topic><topic>Neural networks</topic><topic>Spherical harmonics</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteves, Carlos</au><au>Allen-Blanchette, Christine</au><au>Makadia, Ameesh</au><au>Daniilidis, Kostas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning SO(3) Equivariant Representations with Spherical CNNs</atitle><jtitle>arXiv.org</jtitle><date>2018-09-28</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071884747 |
source | Publicly Available Content Database |
subjects | Artificial neural networks Classification Data augmentation Neural networks Spherical harmonics Three dimensional models |
title | Learning SO(3) Equivariant Representations with Spherical CNNs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20SO(3)%20Equivariant%20Representations%20with%20Spherical%20CNNs&rft.jtitle=arXiv.org&rft.au=Esteves,%20Carlos&rft.date=2018-09-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071884747%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20718847473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071884747&rft_id=info:pmid/&rfr_iscdi=true |