Loading…

Learning SO(3) Equivariant Representations with Spherical CNNs

We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-09
Main Authors: Esteves, Carlos, Allen-Blanchette, Christine, Makadia, Ameesh, Daniilidis, Kostas
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Esteves, Carlos
Allen-Blanchette, Christine
Makadia, Ameesh
Daniilidis, Kostas
description We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071884747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071884747</sourcerecordid><originalsourceid>FETCH-proquest_journals_20718847473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw80lNLMrLzEtXCPbXMNZUcC0szSxLLMpMzCtRCEotKEotTs0rSSzJzM8rVijPLMlQCC7ISC3KTE7MUXD28yvmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzQwsLE3MTc2PiVAEAYLg3sQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071884747</pqid></control><display><type>article</type><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><source>Publicly Available Content Database</source><creator>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creator><creatorcontrib>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</creatorcontrib><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Classification ; Data augmentation ; Neural networks ; Spherical harmonics ; Three dimensional models</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071884747?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><title>arXiv.org</title><description>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.</description><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Data augmentation</subject><subject>Neural networks</subject><subject>Spherical harmonics</subject><subject>Three dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSw80lNLMrLzEtXCPbXMNZUcC0szSxLLMpMzCtRCEotKEotTs0rSSzJzM8rVijPLMlQCC7ISC3KTE7MUXD28yvmYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwNzQwsLE3MTc2PiVAEAYLg3sQ</recordid><startdate>20180928</startdate><enddate>20180928</enddate><creator>Esteves, Carlos</creator><creator>Allen-Blanchette, Christine</creator><creator>Makadia, Ameesh</creator><creator>Daniilidis, Kostas</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180928</creationdate><title>Learning SO(3) Equivariant Representations with Spherical CNNs</title><author>Esteves, Carlos ; Allen-Blanchette, Christine ; Makadia, Ameesh ; Daniilidis, Kostas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20718847473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Data augmentation</topic><topic>Neural networks</topic><topic>Spherical harmonics</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Esteves, Carlos</creatorcontrib><creatorcontrib>Allen-Blanchette, Christine</creatorcontrib><creatorcontrib>Makadia, Ameesh</creatorcontrib><creatorcontrib>Daniilidis, Kostas</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Esteves, Carlos</au><au>Allen-Blanchette, Christine</au><au>Makadia, Ameesh</au><au>Daniilidis, Kostas</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Learning SO(3) Equivariant Representations with Spherical CNNs</atitle><jtitle>arXiv.org</jtitle><date>2018-09-28</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We address the problem of 3D rotation equivariance in convolutional neural networks. 3D rotations have been a challenging nuisance in 3D classification tasks requiring higher capacity and extended data augmentation in order to tackle it. We model 3D data with multi-valued spherical functions and we propose a novel spherical convolutional network that implements exact convolutions on the sphere by realizing them in the spherical harmonic domain. Resulting filters have local symmetry and are localized by enforcing smooth spectra. We apply a novel pooling on the spectral domain and our operations are independent of the underlying spherical resolution throughout the network. We show that networks with much lower capacity and without requiring data augmentation can exhibit performance comparable to the state of the art in standard retrieval and classification benchmarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2071884747
source Publicly Available Content Database
subjects Artificial neural networks
Classification
Data augmentation
Neural networks
Spherical harmonics
Three dimensional models
title Learning SO(3) Equivariant Representations with Spherical CNNs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Learning%20SO(3)%20Equivariant%20Representations%20with%20Spherical%20CNNs&rft.jtitle=arXiv.org&rft.au=Esteves,%20Carlos&rft.date=2018-09-28&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071884747%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20718847473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071884747&rft_id=info:pmid/&rfr_iscdi=true