Loading…
Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations
A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme...
Saved in:
Published in: | arXiv.org 2018-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Treeby, Bradley E Wise, Elliott S Cox, B T |
description | A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071886396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071886396</sourcerecordid><originalsourceid>FETCH-proquest_journals_20718863963</originalsourceid><addsrcrecordid>eNqNjcsKgkAYhYcgSMp3GGhTC8Fm8tI6lVYh6N4G_YdGdEbn8v4N0QO0Onycj3M2KCCUXqL8SsgOhcaMcRyTNCNJQgP0eippLJMD0wOulNMCNK4NuEGZBXqr2YRbMQMu1MyExKe6aYszbvo3zGAwV95m2gqvFYJz0CC_UK6OWeG3D2jL2WQg_OUeHauyvT-iRavVgbHd6F-lrzoSZ5c8T-ktpf9ZH7btRIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071886396</pqid></control><display><type>article</type><title>Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Treeby, Bradley E ; Wise, Elliott S ; Cox, B T</creator><creatorcontrib>Treeby, Bradley E ; Wise, Elliott S ; Cox, B T</creatorcontrib><description>A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Convection-diffusion equation ; Finite difference method ; Frequency domain analysis ; Mathematical analysis ; Partial differential equations ; Spectral methods ; Time dependence ; Time domain analysis ; Wave equations</subject><ispartof>arXiv.org, 2018-03</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071886396?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Treeby, Bradley E</creatorcontrib><creatorcontrib>Wise, Elliott S</creatorcontrib><creatorcontrib>Cox, B T</creatorcontrib><title>Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations</title><title>arXiv.org</title><description>A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation.</description><subject>Convection-diffusion equation</subject><subject>Finite difference method</subject><subject>Frequency domain analysis</subject><subject>Mathematical analysis</subject><subject>Partial differential equations</subject><subject>Spectral methods</subject><subject>Time dependence</subject><subject>Time domain analysis</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjcsKgkAYhYcgSMp3GGhTC8Fm8tI6lVYh6N4G_YdGdEbn8v4N0QO0Onycj3M2KCCUXqL8SsgOhcaMcRyTNCNJQgP0eippLJMD0wOulNMCNK4NuEGZBXqr2YRbMQMu1MyExKe6aYszbvo3zGAwV95m2gqvFYJz0CC_UK6OWeG3D2jL2WQg_OUeHauyvT-iRavVgbHd6F-lrzoSZ5c8T-ktpf9ZH7btRIQ</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>Treeby, Bradley E</creator><creator>Wise, Elliott S</creator><creator>Cox, B T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180322</creationdate><title>Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations</title><author>Treeby, Bradley E ; Wise, Elliott S ; Cox, B T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20718863963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convection-diffusion equation</topic><topic>Finite difference method</topic><topic>Frequency domain analysis</topic><topic>Mathematical analysis</topic><topic>Partial differential equations</topic><topic>Spectral methods</topic><topic>Time dependence</topic><topic>Time domain analysis</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Treeby, Bradley E</creatorcontrib><creatorcontrib>Wise, Elliott S</creatorcontrib><creatorcontrib>Cox, B T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Treeby, Bradley E</au><au>Wise, Elliott S</au><au>Cox, B T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations</atitle><jtitle>arXiv.org</jtitle><date>2018-03-22</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>A class of nonstandard pseudospectral time domain (PSTD) schemes for solving time-dependent hyperbolic and parabolic partial differential equations (PDEs) is introduced. These schemes use the Fourier collocation spectral method to compute spatial gradients and a nonstandard finite difference scheme to integrate forwards in time. The modified denominator function that makes the finite difference time scheme exact is transformed into the spatial frequency domain or k-space using the dispersion relation for the governing PDE. This allows the correction factor to be applied in the spatial frequency domain as part of the spatial gradient calculation. The derived schemes can be formulated to be unconditionally stable, and apply to PDEs in any space dimension. Examples of the resulting nonstandard PSTD schemes for several PDEs are given, including the wave equation, diffusion equation, and convection-diffusion equation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071886396 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Convection-diffusion equation Finite difference method Frequency domain analysis Mathematical analysis Partial differential equations Spectral methods Time dependence Time domain analysis Wave equations |
title | Nonstandard Fourier Pseudospectral Time Domain (PSTD) Schemes for Partial Differential Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Nonstandard%20Fourier%20Pseudospectral%20Time%20Domain%20(PSTD)%20Schemes%20for%20Partial%20Differential%20Equations&rft.jtitle=arXiv.org&rft.au=Treeby,%20Bradley%20E&rft.date=2018-03-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2071886396%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20718863963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071886396&rft_id=info:pmid/&rfr_iscdi=true |