Loading…
Remote optimization of an ultra-cold atoms experiment by experts and citizen scientists
We introduce a novel remote interface to control and optimize the experimental production of Bose-Einstein condensates (BECs) and find improved solutions using two distinct implementations. First, a team of theoreticians employed a Remote version of their dCRAB optimization algorithm (RedCRAB), and...
Saved in:
Published in: | arXiv.org 2018-03 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a novel remote interface to control and optimize the experimental production of Bose-Einstein condensates (BECs) and find improved solutions using two distinct implementations. First, a team of theoreticians employed a Remote version of their dCRAB optimization algorithm (RedCRAB), and second a gamified interface allowed 600 citizen scientists from around the world to participate in real-time optimization. Quantitative studies of player search behavior demonstrated that they collectively engage in a combination of local and global search. This form of adaptive search prevents premature convergence by the explorative behavior of low-performing players while high-performing players locally refine their solutions. In addition, many successful citizen science games have relied on a problem representation that directly engaged the visual or experiential intuition of the players. Here we demonstrate that citizen scientists can also be successful in an entirely abstract problem visualization. This gives encouragement that a much wider range of challenges could potentially be open to gamification in the future. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1709.02230 |