Loading…
Spintronic nano-scale harvester of broadband microwave energy
The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode contains a magnetic tunnel junction with a canted ma...
Saved in:
Published in: | arXiv.org 2018-03 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fang, Bin Carpentieri, Mario Louis, Steven Tiberkevich, Vasyl Slavin, Andrei Krivorotov, Ilya N Tomasello, Riccardo Giordano, Anna Jiang, Hongwen Cai, Jialin Fan, Yaming Zhang, Zehong Zhang, Baoshun Katine, Jordan A Wang, Kang L Pedram Khalili Amiri Finocchio, Giovanni Zeng, Zhongming |
description | The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode contains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics. |
doi_str_mv | 10.48550/arxiv.1801.00445 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071927528</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071927528</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-5887c897dde104f90656300584375c5bbea5e284501b836617ad9e8492da20a53</originalsourceid><addsrcrecordid>eNotjstKw0AUQAdBaKn9gO4GXCfeedzMZOFCii8ouLD7cpO50ZQ6Uydt1L83oKuzO-cIsVJQWo8IN5S_-7FUHlQJYC1eiLk2RhXeaj0Ty2HYA4CunEY0c3H7euzjKafYtzJSTMXQ0oHlO-WRhxNnmTrZ5EShoRjkR9_m9EUjS46c336uxGVHh4GX_1yI7cP9dv1UbF4en9d3m4JQ-wK9d62vXQiswHY1VFgZAPTWOGyxaZiQtbcIqvGmqpSjULO3tQ6kgdAsxPWf9pjT53n62u3TOcepuNPgVK3dlDG_V91I6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071927528</pqid></control><display><type>article</type><title>Spintronic nano-scale harvester of broadband microwave energy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Fang, Bin ; Carpentieri, Mario ; Louis, Steven ; Tiberkevich, Vasyl ; Slavin, Andrei ; Krivorotov, Ilya N ; Tomasello, Riccardo ; Giordano, Anna ; Jiang, Hongwen ; Cai, Jialin ; Fan, Yaming ; Zhang, Zehong ; Zhang, Baoshun ; Katine, Jordan A ; Wang, Kang L ; Pedram Khalili Amiri ; Finocchio, Giovanni ; Zeng, Zhongming</creator><creatorcontrib>Fang, Bin ; Carpentieri, Mario ; Louis, Steven ; Tiberkevich, Vasyl ; Slavin, Andrei ; Krivorotov, Ilya N ; Tomasello, Riccardo ; Giordano, Anna ; Jiang, Hongwen ; Cai, Jialin ; Fan, Yaming ; Zhang, Zehong ; Zhang, Baoshun ; Katine, Jordan A ; Wang, Kang L ; Pedram Khalili Amiri ; Finocchio, Giovanni ; Zeng, Zhongming</creatorcontrib><description>The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode contains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1801.00445</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Broadband ; Clean energy ; Electric potential ; Electronics ; Energy harvesting ; Frequency ranges ; Nanotechnology devices ; Portable equipment ; Radio frequency ; Tunnel junctions ; Wireless communications</subject><ispartof>arXiv.org, 2018-03</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071927528?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Carpentieri, Mario</creatorcontrib><creatorcontrib>Louis, Steven</creatorcontrib><creatorcontrib>Tiberkevich, Vasyl</creatorcontrib><creatorcontrib>Slavin, Andrei</creatorcontrib><creatorcontrib>Krivorotov, Ilya N</creatorcontrib><creatorcontrib>Tomasello, Riccardo</creatorcontrib><creatorcontrib>Giordano, Anna</creatorcontrib><creatorcontrib>Jiang, Hongwen</creatorcontrib><creatorcontrib>Cai, Jialin</creatorcontrib><creatorcontrib>Fan, Yaming</creatorcontrib><creatorcontrib>Zhang, Zehong</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><creatorcontrib>Katine, Jordan A</creatorcontrib><creatorcontrib>Wang, Kang L</creatorcontrib><creatorcontrib>Pedram Khalili Amiri</creatorcontrib><creatorcontrib>Finocchio, Giovanni</creatorcontrib><creatorcontrib>Zeng, Zhongming</creatorcontrib><title>Spintronic nano-scale harvester of broadband microwave energy</title><title>arXiv.org</title><description>The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode contains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics.</description><subject>Broadband</subject><subject>Clean energy</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Energy harvesting</subject><subject>Frequency ranges</subject><subject>Nanotechnology devices</subject><subject>Portable equipment</subject><subject>Radio frequency</subject><subject>Tunnel junctions</subject><subject>Wireless communications</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjstKw0AUQAdBaKn9gO4GXCfeedzMZOFCii8ouLD7cpO50ZQ6Uydt1L83oKuzO-cIsVJQWo8IN5S_-7FUHlQJYC1eiLk2RhXeaj0Ty2HYA4CunEY0c3H7euzjKafYtzJSTMXQ0oHlO-WRhxNnmTrZ5EShoRjkR9_m9EUjS46c336uxGVHh4GX_1yI7cP9dv1UbF4en9d3m4JQ-wK9d62vXQiswHY1VFgZAPTWOGyxaZiQtbcIqvGmqpSjULO3tQ6kgdAsxPWf9pjT53n62u3TOcepuNPgVK3dlDG_V91I6Q</recordid><startdate>20180331</startdate><enddate>20180331</enddate><creator>Fang, Bin</creator><creator>Carpentieri, Mario</creator><creator>Louis, Steven</creator><creator>Tiberkevich, Vasyl</creator><creator>Slavin, Andrei</creator><creator>Krivorotov, Ilya N</creator><creator>Tomasello, Riccardo</creator><creator>Giordano, Anna</creator><creator>Jiang, Hongwen</creator><creator>Cai, Jialin</creator><creator>Fan, Yaming</creator><creator>Zhang, Zehong</creator><creator>Zhang, Baoshun</creator><creator>Katine, Jordan A</creator><creator>Wang, Kang L</creator><creator>Pedram Khalili Amiri</creator><creator>Finocchio, Giovanni</creator><creator>Zeng, Zhongming</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180331</creationdate><title>Spintronic nano-scale harvester of broadband microwave energy</title><author>Fang, Bin ; Carpentieri, Mario ; Louis, Steven ; Tiberkevich, Vasyl ; Slavin, Andrei ; Krivorotov, Ilya N ; Tomasello, Riccardo ; Giordano, Anna ; Jiang, Hongwen ; Cai, Jialin ; Fan, Yaming ; Zhang, Zehong ; Zhang, Baoshun ; Katine, Jordan A ; Wang, Kang L ; Pedram Khalili Amiri ; Finocchio, Giovanni ; Zeng, Zhongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-5887c897dde104f90656300584375c5bbea5e284501b836617ad9e8492da20a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Broadband</topic><topic>Clean energy</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Energy harvesting</topic><topic>Frequency ranges</topic><topic>Nanotechnology devices</topic><topic>Portable equipment</topic><topic>Radio frequency</topic><topic>Tunnel junctions</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>Fang, Bin</creatorcontrib><creatorcontrib>Carpentieri, Mario</creatorcontrib><creatorcontrib>Louis, Steven</creatorcontrib><creatorcontrib>Tiberkevich, Vasyl</creatorcontrib><creatorcontrib>Slavin, Andrei</creatorcontrib><creatorcontrib>Krivorotov, Ilya N</creatorcontrib><creatorcontrib>Tomasello, Riccardo</creatorcontrib><creatorcontrib>Giordano, Anna</creatorcontrib><creatorcontrib>Jiang, Hongwen</creatorcontrib><creatorcontrib>Cai, Jialin</creatorcontrib><creatorcontrib>Fan, Yaming</creatorcontrib><creatorcontrib>Zhang, Zehong</creatorcontrib><creatorcontrib>Zhang, Baoshun</creatorcontrib><creatorcontrib>Katine, Jordan A</creatorcontrib><creatorcontrib>Wang, Kang L</creatorcontrib><creatorcontrib>Pedram Khalili Amiri</creatorcontrib><creatorcontrib>Finocchio, Giovanni</creatorcontrib><creatorcontrib>Zeng, Zhongming</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Bin</au><au>Carpentieri, Mario</au><au>Louis, Steven</au><au>Tiberkevich, Vasyl</au><au>Slavin, Andrei</au><au>Krivorotov, Ilya N</au><au>Tomasello, Riccardo</au><au>Giordano, Anna</au><au>Jiang, Hongwen</au><au>Cai, Jialin</au><au>Fan, Yaming</au><au>Zhang, Zehong</au><au>Zhang, Baoshun</au><au>Katine, Jordan A</au><au>Wang, Kang L</au><au>Pedram Khalili Amiri</au><au>Finocchio, Giovanni</au><au>Zeng, Zhongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spintronic nano-scale harvester of broadband microwave energy</atitle><jtitle>arXiv.org</jtitle><date>2018-03-31</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>The harvesting of ambient radio-frequency (RF) energy is an attractive and clean way to realize the idea of self-powered electronics. Here we present a design for a microwave energy harvester based on a nanoscale spintronic diode (NSD). This diode contains a magnetic tunnel junction with a canted magnetization of the free layer, and can convert RF energy over the frequency range from 100 MHz to 1.2 GHz into DC electric voltage. An attractive property of the developed NSD is the generation of an almost constant DC voltage in a wide range of frequencies of the external RF signals. We further show that the developed NSD provides sufficient DC voltage to power a low-power nanodevice - a black phosphorus photo-sensor. Our results demonstrate that the developed NSD could pave the way for using spintronic detectors as building blocks for self-powered nano-systems, such as implantable biomedical devices, wireless sensors, and portable electronics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1801.00445</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071927528 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Broadband Clean energy Electric potential Electronics Energy harvesting Frequency ranges Nanotechnology devices Portable equipment Radio frequency Tunnel junctions Wireless communications |
title | Spintronic nano-scale harvester of broadband microwave energy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spintronic%20nano-scale%20harvester%20of%20broadband%20microwave%20energy&rft.jtitle=arXiv.org&rft.au=Fang,%20Bin&rft.date=2018-03-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1801.00445&rft_dat=%3Cproquest%3E2071927528%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-5887c897dde104f90656300584375c5bbea5e284501b836617ad9e8492da20a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071927528&rft_id=info:pmid/&rfr_iscdi=true |