Loading…
New gravitational solutions via a Riemann-Hilbert approach
We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, t...
Saved in:
Published in: | arXiv.org 2018-03 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Cardoso, G L Serra, J C |
description | We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations. |
doi_str_mv | 10.48550/arxiv.1711.01113 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2071960631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2071960631</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-eb7db97154f626eb25662cabcce1ac2b68808a30002425f2adcb22c76414df5b3</originalsourceid><addsrcrecordid>eNotjs1Kw0AURgdBsNQ-gLsB14lz7_yl7qSoLRQF6b7cmUx0SkzqTBJ9fFt0db7V-Q5jNyBKVWkt7ij9xKkEC1AKAJAXbIZSQlEpxCu2yPkghEBjUWs5Y_cv4Zu_J5riQEPsO2p57tvxPDOfInHibzF8UtcV69i6kAZOx2PqyX9cs8uG2hwW_5yz3dPjbrUutq_Pm9XDtiCNUARna7e0oFVj0ASH2hj05LwPQB6dqSpRkTw3KdQNUu0dordGgaob7eSc3f5pT69fY8jD_tCP6RSa9ygsLI0wEuQvhchIuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071960631</pqid></control><display><type>article</type><title>New gravitational solutions via a Riemann-Hilbert approach</title><source>Publicly Available Content Database</source><creator>Cardoso, G L ; Serra, J C</creator><creatorcontrib>Cardoso, G L ; Serra, J C</creatorcontrib><description>We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1711.01113</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Deformation ; Factorization ; Mathematical analysis</subject><ispartof>arXiv.org, 2018-03</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2071960631?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Cardoso, G L</creatorcontrib><creatorcontrib>Serra, J C</creatorcontrib><title>New gravitational solutions via a Riemann-Hilbert approach</title><title>arXiv.org</title><description>We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.</description><subject>Deformation</subject><subject>Factorization</subject><subject>Mathematical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs1Kw0AURgdBsNQ-gLsB14lz7_yl7qSoLRQF6b7cmUx0SkzqTBJ9fFt0db7V-Q5jNyBKVWkt7ij9xKkEC1AKAJAXbIZSQlEpxCu2yPkghEBjUWs5Y_cv4Zu_J5riQEPsO2p57tvxPDOfInHibzF8UtcV69i6kAZOx2PqyX9cs8uG2hwW_5yz3dPjbrUutq_Pm9XDtiCNUARna7e0oFVj0ASH2hj05LwPQB6dqSpRkTw3KdQNUu0dordGgaob7eSc3f5pT69fY8jD_tCP6RSa9ygsLI0wEuQvhchIuw</recordid><startdate>20180313</startdate><enddate>20180313</enddate><creator>Cardoso, G L</creator><creator>Serra, J C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180313</creationdate><title>New gravitational solutions via a Riemann-Hilbert approach</title><author>Cardoso, G L ; Serra, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-eb7db97154f626eb25662cabcce1ac2b68808a30002425f2adcb22c76414df5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Deformation</topic><topic>Factorization</topic><topic>Mathematical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Cardoso, G L</creatorcontrib><creatorcontrib>Serra, J C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardoso, G L</au><au>Serra, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New gravitational solutions via a Riemann-Hilbert approach</atitle><jtitle>arXiv.org</jtitle><date>2018-03-13</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We consider the Riemann-Hilbert factorization approach to solving the field equations of dimensionally reduced gravity theories. First we prove that functions belonging to a certain class possess a canonical factorization due to properties of the underlying spectral curve. Then we use this result, together with appropriate matricial decompositions, to study the canonical factorization of non-meromorphic monodromy matrices that describe deformations of seed monodromy matrices associated with known solutions. This results in new solutions, with unusual features, to the field equations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1711.01113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2071960631 |
source | Publicly Available Content Database |
subjects | Deformation Factorization Mathematical analysis |
title | New gravitational solutions via a Riemann-Hilbert approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20gravitational%20solutions%20via%20a%20Riemann-Hilbert%20approach&rft.jtitle=arXiv.org&rft.au=Cardoso,%20G%20L&rft.date=2018-03-13&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1711.01113&rft_dat=%3Cproquest%3E2071960631%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-eb7db97154f626eb25662cabcce1ac2b68808a30002425f2adcb22c76414df5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2071960631&rft_id=info:pmid/&rfr_iscdi=true |